Last Updated: 04/23/2024

CME Scoreboard

Go to CME Scoreboard Web App

About

The CME Scoreboard is part of the the CME Arrival Time and Impact Working Team in the Community-wide International Forum for Space Weather Modeling Capabilities Assessment.

The CME Scoreboard (developed at the Community Coordinated Modeling Center, CCMC) is a research-based forecasting methods validation activity which provides a central location for the community to:

  • submit their forecast in real-time
  • quickly view all forecasts at once in real-time
  • compare forecasting methods when the event has arrived

Using this system:

  • Anyone can view prediction tables
  • Registered users can enter in your CME shock arrival time forecast after logging in:
    • Registered Users: Begin by finding your CME under the "Active CMEs" section, then click "Add Prediction" and select your forecasting "Method Type" from the list.
    • Power Users: If you do not see your CME listed under the "Active CMEs" section, click "Add CME" to get started (Email M. Leila Mays to request power user privileges). To enter the actual CME shock arrival time, click "Edit CME" after you are done entering your prediction(s).
    • To register for an account, please email M. Leila Mays with your name, affiliation, and email address.
  • See "CME Propagation Models" below for a list of registered methods and how to add your model for this effort.

Communication:

  • To receive periodic announcements and/or automated email notifications when a new CME is added to the CME Scoreboard, please send an email to M. Leila Mays with your name and email.

Resources:

CME Propagation Models

This is a subset of space weather forecasting CME propagation models (see below for references) that can be selected as the CME arrival time "Prediction Method" in the CME arrival time Scoreboard. If you would like to register your prediction method, please send an email to M. Leila Mays or Yihua Zheng with your model/technique details. All prediction methods are welcome and all are encouraged to participate in this research activity.

CME shock arrival forecast

  • Anemomilos (Tobiska, 2013)
  • CAT-PUMA (CME Arrival Time Prediction Using Machine learning Algorithms) (Liu et al., 2018)
  • Cone+HAF (Wang et al., 2018)
  • EAM (Effective Acceleration Model) (Paouris et al., 2017)
  • ELEvo (Ellipse Evolution) Model (Möstl et al., 2015)
  • ELEvoHI (Ellipse Evolution HI) Model (Rollett et al., 2016, Amerstorfer et al., 2018)
  • ESA (Empirical Shock Arrival) Model (Gopalswamy et al., 2001, 2005)
  • H3DMHD (HAFv.3 +3DMHD) Model (Wu et al., 2011)
  • HAFv.3 (Fry et al., 2001, 2003, Smith et al., 2009, McKenna-Lawlor et al., 2006)
  • SAP (Sheath-accumulating Propagation) (Takahashi and Shibata, 2017)
  • SARM (Shock ARrival Model) (Núñez et al., in preparation)
  • SPM (Feng and Zhao, 2006) and SPM2 (Zhao and Feng, 2014)
  • STOA (Shock Time of Arrival) (Dryer et al., 1984, 2004, Fry et al., 2001, McKenna-Lawlor et al., 2006)
  • WSA-ENLIL + Cone Model (Odstrcil et al., 2004)
  • Ballistic projection

CME arrival forecast

  • BHV (Bothmer Heseman Venzmer) Model (Bothmer and Schwenn, 1998)
  • CMEFM v.0.1 (Coronal Mass Ejection Forecasting Method Version 0.1)
  • DBEM (Drag Based Ensemble Model) (Dumbovic et al., 2018)
  • DBM (Drag Based Model) (Vršnak et al., 2013)
  • DBM + ESWF (Drag Based Model + Empirical Solar wind Forecast) (Vršnak, Temmer, Veronig, 2007; Rotter et al., 2015)
  • COMESEP automated system (CGFT, Geomag24) (Crosby et al., 2012)
  • ECA (Empirical CME Arrival) Model (Gopalswamy et al., 2000, 2001)
  • Expansion Speed Prediction Model (Schwenn, 2005)
  • WSA-ENLIL + Cone Model (Odstrcil et al., 2004)
  • HelTomo (Jackson et al., 2010, 2011)
  • HI J-map technique (Sheeley, 2008; Rouillard et al., 2008; Davis et al., 2009, 2011)
  • TH (Tappin-Howard) Model (Tappin and Howard, 2009, Howard and Tappin, 2010)
  • Ballistic projection

References

  • Amerstorfer, T., Möstl, C., Hess, P., Temmer, M., Mays, M.L., Reiss, M.A., Lowrance, P., Bourdin, P.-A., 2018, Space Weather, 16, 784, doi:10.1029/2017SW001786
  • Bothmer, V. and Schwenn, R.: The structure and origin of magnetic clouds in the solar wind, Ann. Geophys., 16, 1-24, doi:10.1007/s00585-997-0001-x.
  • Crosby, N. B., A. Veronig, E. Robbrecht, B. Vrsnak, S. Vennerstrom, O. Malandraki, S. Dalla, L. Rodriguez, N. Srivastava, M. Hesse, D. Odstrcil and COMESEP Consortium: Forecasting the space weather impact: The COMESEP project, AIP Conf. Proc. 1500, 159 (2012); doi:10.1063/1.4768760
  • Davis, C. J., J. A. Davies, M. Lockwood, A. P. Rouillard, C. J. Eyles, and R. A. Harrison (2009), Stereoscopic imaging of an Earth‐impacting solar coronal mass ejection: A major milestone for the STEREO mission, Geophys. Res. Lett., 36, L08102, doi:10.1029/2009GL038021.
  • Davis, C. J., et al. (2011), A comparison of space weather analysis techniques used to predict the arrival of the Earth‐directed CME and its shockwave launched on 8 April 2010, Space Weather, 9, S01005, doi:10.1029/2010SW000620.
  • Dryer, M. and D. F. Smart (1984), Dynamical Models of Coronal Transients and Interplanetary Disturbances, Adv. Space Res., 4, 291‑301, doi:10.1016/0273-1177(84)90200-X.
  • Dryer, M., Z. Smith, C. D. Fry, W. Sun, C. S. Deehr, and S.-I. Akasofu (2004), Real-time shock arrival predictions during the ‘‘Halloween 2003 epoch,' ' Space Weather, 2, S09001, doi:10.1029/2004SW000087.
  • Dumbović, M.; Čalogović, J.; Vršnak, B.; Temmer, M.; Mays, M. L.; Veronig, A.; Piantschitsch, I. (2018), "The Drag-based Ensemble Model (DBEM) for Coronal Mass Ejection Propagation", ApJ, 854, 180. doi:10.3847/1538-4357/aaaa66
  • Feng, X., X. Zhao (2006), A New Prediction Method for the Arrival Time of Interplanetary Shocks, Solar Physics, 238, 1, doi:10.1007/s11207-006-0185-3.
  • Fry, C. D., W. Sun, C. S. Deehr, M. Dryer, Z. Smith, S.-I. Akasofu, M. Tokumaru, and M. Kojima, Improvements to the HAF solar wind model for space weather predictions, J. Geophys. Res., 106, 20,985 - 21,001, 2001, doi:10.1029/2000JA000220.
  • Fry, C. D., M. Dryer, Z. Smith, W. Sun, C. S. Deehr, and S.-I. Akasofu (2003), Forecasting solar wind structures and shock arrival times using an ensemble of models, J. Geophys. Res., 108(A2), 1070, doi:10.1029/2002JA009474.
  • Gopalswamy, N., Lara, A., Lepping, R.P., et al. Interplanetary acceleration of coronal mass ejections. J. Geophys. Res. Lett. 27, 145-148, 2000, 10.1029/1999GL003639.
  • Gopalswamy, N., A. Lara, S. Yashiro, M. L. Kaiser, and R. A. Howard (2001), Predicting the 1-AU arrival times of coronal mass ejections, J. Geophys. Res., 106, 29, 207, 10.1029/2001JA000177.
  • Gopalswamy, N., A. Lara, P. K. Manoharan, and R. A. Howard (2005), An empirical model to predict the 1-AU arrival of interplanetary shocks, Adv. Space Res., 36, 2289, 10.1016/j.asr.2004.07.014.
  • Jackson, B. V., P. P. Hick, M. M. Bisi, J. M. Clover, and A. Buffington (2010), Inclusion of In-Situ Velocity Measurements into the UCSD Time-Dependent Tomography to Constrain and Better-Forecast Remote-Sensing Observations, Sol. Phys., 265, 245-256, doi:10.1007/s11207-010-9529-0
  • Jackson, B. V., P. P. Hick, A. Buffington, M. M. Bisi, J. M. Clover, M. Tokumaru, M. Kojima, and K. Fujiki (2011), Solar Mass Ejection Imager (SMEI) 3-D reconstruction of density enhancements behind interplanetary shocks: In-situ comparison near Earth and at STEREO, J. Atmos. Sol. Terr., 73, 1214-1227, doi:10.1016/j.jastp.2010.11.023
  • Liu, Jiajia, Yudong Ye, Chenlong Shen, Yuming Wang, Robert Erdélyi (2018), A New Tool for CME Arrival Time Prediction Using Machine Learning Algorithms: CAT-PUMA, accepted by the Astrophysical Journal. arXiv:1802.02803
  • McKenna-Lawlor, S., M. Dryer, M.D. Kartalev, Z. Smith, C.D. Fry, W. Sun, C.S. Deehr, K. Kecskemety, and K. Kudela (2006), Near Real-time Predictions of the Arrival at the Earth of Flare-generated Shocks during Solar Cycle 23, J. Geophys. Res., 111, A11103, doi:10.1029/2005JA011162.
  • Möstl, C., T. Rollett, R. Frahm, Y. Liu, D. Long, R. Colaninno, M. Reiss, M. Temmer, C. Farrugia, A. Posner, M. Dumbović, M. Janvier, P. Démoulin, P. Boakes, A. Devos, E. Kraaikamp, M. L. Mays, B. Vršnak (2015), Strong coronal channeling and interplanetary evolution of a solar storm up to Earth and Mars, Nature Communications, 6:7135. 10.1038/ncomms8135
  • Núñez, M., T. Nieves‐Chinchilla, and A. Pulkkinen (2016), Prediction of shock arrival times from CME and flare data, Space Weather, 14, 544-562, , doi:10.1002/2016SW001361.
  • Tappin, S. J., and T. A. Howard (2009), Interplanetary coronal mass ejections observed in the heliosphere: 2. Model and data comparison, Space Sci. Rev., 147, 55-87, doi:10.1007/s11214-009-9550-5.
  • Howard T. A., and S. J. Tappin, Application of a new phenomenological coronal mass ejection model to space weather forecasting, Space Weather, Volume 8, Issue 7, July 2010, 10.1029/2009SW000531.
  • Odstrcil, D., V. J. Pizzo, J. A. Linker, P. Riley, R. Lionello, Z. Mikic, and J. G. Luhmann (2004), Initial coupling of coronal and heliospheric numerical magnetohydrodynamic codes, J. Atmos. Sol. Terr. Phys., 66, 1311-1326, doi:10.1016/j.jastp.2004.04.007.
  • Paouris, E. & Mavromichalaki, H. Sol Phys (2017) 292: 30. doi:10.1007/s11207-017-1050-2.
  • Rollett, T., Möstl, C., Isavnin, A., Davies, J.A., Kubicka, M., Amerstorfer, U.V., Harrison, R.A., 2016, ApJ, 824, 458 131, doi:10.3847/0004-637X/824/2/131
  • Rotter, T., A. M. Veronig, M. Temmer, B. Vršnak (2015), Real-Time Solar Wind Prediction Based on SDO/AIA Coronal Hole Data, Solar Physics, 290, 5, doi: 10.1007/s11207-015-0680-5.
  • Rouillard, A. P., et al. (2008), First imaging of corotating interaction regions using the STEREO spacecraft, Geophys. Res. Lett., 35, L10110, doi:10.1029/2008GL033767.
  • Schwenn, R., Dal Lago, A., Huttunen, E., and Gonzalez, W. D.: The association of coronal mass ejections with their effects near the Earth, Ann. Geophys., 23, 1033-1059, doi:10.5194/angeo-23-1033-2005, 2005.
  • Sheeley, N. R., Jr., et al. (2008), Heliospheric Images of the solar wind at Earth, Astrophys. J., 675, 853-862, doi:10.1086/526422.
  • Smith, Z. K., M. Dryer, S.M.P. McKenna-Lawlor, C.D. Fry, C.S. Deehr, and W. Sun (2009), Operational validation of HAF' s predictions of interplanetary shock arrivals at Earth: Declining phase of Solar Cycle 23, J. Geophys. Res., 114(5), A05106, doi:10.1029/2008JA013836.
  • T. Takahashi and K. Shibata (2017), Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection, The Astrophysical Journal Letters, 837, 2, doi:10.3847/2041-8213/aa624c.
  • Tobiska, W. K., D. Knipp, W. J. Burke, D. Bouwer, J. Bailey, D. Odstrcil, M. P. Hagan, J. Gannon, and B. R. Bowman (2013), The Anemomilos prediction methodology for Dst, Space Weather, 11, 490-508, doi:10.1002/swe.20094.
  • Vršnak, B., M. Temmer, A. Veronig (2007), Coronal Holes and Solar Wind High-Speed Streams: I. Forecasting the Solar Wind Parameters, Solar Physics, 240, 2, doi:10.1007/s11207-007-0285-8.
  • Vršnak, B. , T. Žic, D. Vrbanec, M. Temmer, T. Rollett, C. Möstl, A. Veronig, J. Čalogović, M. Dumbović, S. Lulić, Y.-J. Moon, A. Shanmugaraju (2013), Propagation of Interplanetary Coronal Mass Ejections: The Drag-Based Model, Solar Physics, 285, doi:10.1007/s11207-012-0035-4.
  • Jingjing Wang, Xianzhi Ao, Yuming Wang, Chuanbing Wang, Yanxia Cai, Bingxian Luo, Siqing Liu, Chenglong Shen, Bin Zhuang, Xianghui Xue and Jiancun Gong, An operational solar wind prediction system transitioning fundamental science to operations, J. Space Weather Space Clim., 8 (2018) A39, doi: 10.1051/swsc/2018025.
  • Wu, C.-C., M. Dryer, S. T. Wu, B. E. Wood, C. D. Fry, K. Liou, and S. Plunkett (2011), Global three-dimensional simulation of the interplanetary evolution of the observed geoeffective coronal mass ejection during the epoch 1-4 August 2010, J. Geophys. Res., 116, A12103, doi:10.1029/2011JA016947.
  • Zhao, X., X. Feng (2014), Shock Propagation Model version 2 and its application in predicting the arrivals at Earth of interplanetary shocks during Solar Cycle 23, J. Geophys. Res., 119, 1, doi:10.1002/2012JA018503.

Publication Policy

For tracking purposes for our government sponsors, we ask that you notify the CCMC whenever you use any CCMC tools/software systems in any scientific publications and/or presentations. Follow the steps on the publication submission page

See our full publication policy for a sample 'acknowledgement statement' to be included in your publication.

CME Scoreboard Web Service Calls/API

Prediction Methods

https://kauai.ccmc.gsfc.nasa.gov/CMEscoreboard/WS/get/methods

Return list of prediction method names:

"3DCORE, Anemomilos, Average of all Methods, Ballistic projection, BHV, CAT-PUMA, CMEFM v.0.1, COMESEP, Cone + HAF (SEPC, NSSC, CAS), DBM, DBM (SIDC), DBM + ESWF, EAM (Effective Acceleration Model), ECA, ELEvo, ELEvoHI, Ensemble WSA-ENLIL + Cone (GSFC SWRC), Ensemble WSA-ENLIL + Cone (NASA M2M), ESA, Expansion Speed Prediction Model, H3DMHD (HAFv.3 + 3DMHD), HAFv.3, HAFv2w, HI J-map, HUXt, IZMIRAN, Ooty IPS, Other, Other (British Geological Survey), Other (ips.gov.au), Other (NSSC SEPC), Other (SIDC), Rice-ENLIL Dst, SAO Crowdsource, SAP, SARM, SPM, SPM2, STOA, sunRunner1D, TH, WSA-ENLIL + Cone, WSA-ENLIL + Cone (BoM), WSA-ENLIL + Cone (GSFC SWRC), WSA-ENLIL + Cone (KSWC), WSA-ENLIL + Cone (Met Office), WSA-ENLIL + Cone (NASA M2M), WSA-ENLIL + Cone (NOAA/SWPC)"

Predictions

Return list of predictions for all 'closed out' CMEs, i.e. CME that has arrived or has been determined as no arrival observed.

https://kauai.ccmc.gsfc.nasa.gov/CMEscoreboard/WS/get/predictions

Optional parameters:

CMEID: search by specific CME ID, e.g. 2024-03-23T01:48:00-CME-001

CMEtimeStart: search by CME observed time range starting with 'CMEtimeStart' in format yyyy-MM-dd; note: if 'CMEtimeStart' is used, 'CMEtimeEnd' is required and should be after 'CMEtimeStart'.

CMEtimeEnd: search by CME observed time range ending by 'CMEtimeEnd' in format yyyy-MM-dd; note: if 'CMEtimeEnd' is used, 'CMEtimeStart' is required and should be before 'CMEtimeEnd'.

skipNoArrivalObservedCMEs: flag to skip no arrival observed CME(s) or not; default to 'true' to skip them.

method: search by prediction method name; default to ALL (use 'prediction method' API above to see the list of names)

Returned JSON Object:

{
  "cmeID": "2024-03-23T01:48:00-CME-001",
  "observedTime": "2024-03-23T01:48Z",
  "noArrivalObserved": false,
  "arrivalTime": "2024-03-24T14:10Z",
  "maxKP": 8,
  "dstMin": null,
  "dstMinTime": null,
  "cmeNote": "Partial halo to the NW following the front of the earlier 2024-03-23T01:25Z CME, with a faint shock front portion seen to SW in SOHO LASCO C2/C3. There is a data gap in STEREO A COR2 from 2024-03-22T18:23Z to 2024-03-23T03:23Z, after which the end of this event is seen for a few frames before exiting the field of view. A possible source could be the slower developing dimming to the SSW of Active Region 3614 (N25E07) following the deep  northern dimming to the NE of this Active Region. Alternative source could be the concurrent flare from Active Region 3615 (S14E15). Combined arrival of this CME with CME: 2024-03-23T01:25Z was detected at L1 by DSCOVR and ACE at 2024-03-24T14:10Z. The arrival signature is characterized by significant sharp increase in B-total from 6nT to 26nT, eventually reaching 33nT. There is a corresponding jump in solar wind speed from 550 km/s to 851 km/s, with a peak of 880 km/s and an increase in density and temperature seen at ~14:10Z.",
  "predictions": [
    {
      "predictedMethodName": "WSA-ENLIL + Cone (NASA M2M)",
      "submissionTime": "2024-03-23T16:51Z",
      "predictedArrivalTime": "2024-03-24T17:55Z",
      "uncertaintyMinusInHrs": 7,
      "uncertaintyPlusInHrs": 7,
      "confidenceInPercentage": null,
      "predictedMaxKpLowerRange": 6,
      "predictedMaxKpUpperRange": 8,
      "predictedDstMin": null,
      "predictedDstMinTime": null,
      "differenceInHrs": "3.75",
      "leadTimeInHrs": "21.32",
      "predictionNote": "2-CME simulation, with CMEs arriving at L1 as a combined front:

## Community Coordinated Modeling Center Database Of Notifications, Knowledge, Information ( CCMC DONKI )
## Message Type: Space Weather Notification - CMEs (Solar Orbiter, STEREO A, Psyche, Missions Near Earth)
##
## Message Issue Date: 2024-03-23T16:51:43Z
## Message ID: 20240323-AL-012
##
## Disclaimer: NOAA's Space Weather Prediction Center is the United States Government official source for space weather forecasts. This \"Experimental Research Information\" consists of preliminary NASA research products and should be interpreted and used accordingly.


## Summary:

Multiple CMEs have been detected as follows:
1: O-type CME detected by STEREO A / SOHO. 

Start time of the event: 2024-03-23T01:25Z.

Estimated speed: ~1613 km/s.

Estimated opening half-angle: 41 deg.

Direction (lon./lat.): 2/22 in Heliocentric Earth Equatorial coordinates.

Activity ID: 2024-03-23T01:25:00-CME-001

2: O-type CME detected by STEREO A / SOHO. 

Start time of the event: 2024-03-23T01:48Z.

Estimated speed: ~1572 km/s.

Estimated opening half-angle: 45 deg.

Direction (lon./lat.): 5/5 in Heliocentric Earth Equatorial coordinates.

Activity ID: 2024-03-23T01:48:00-CME-001

Based on preliminary analysis by the Moon to Mars Space Weather Analysis Office and heliospheric modeling carried out at NASA Community Coordinated Modeling Center, it is estimated that the CMEs may affect Solar Orbiter, STEREO A, and Psyche (minor impact).  The leading edge of the CMEs will reach Solar Orbiter at 2024-03-23T14:01Z, STEREO A at 2024-03-24T15:36Z, and Psyche at 2024-03-27T22:00Z (plus minus 7 hours). 
  
The simulation also indicates that the CMEs may impact NASA missions near Earth. Simulations indicate that the leading edge of the CMEs will reach NASA missions near Earth at about 2024-03-24T17:55Z (plus minus 7 hours). The roughly estimated expected range of the maximum Kp index is 6-8 (moderate to severe).
   
  
Links to the movies of the modeled event (includes CMEs: 2024-03-23T01:25:00-CME-001, 2024-03-23T01:48:00-CME-001):

http://iswa.gsfc.nasa.gov/downloads/20240323_031900_2.0_anim.tim-den.gif
http://iswa.gsfc.nasa.gov/downloads/20240323_031900_2.0_anim.tim-vel.gif
http://iswa.gsfc.nasa.gov/downloads/20240323_031900_2.0_anim.tim-den-Stereo_A.gif
http://iswa.gsfc.nasa.gov/downloads/20240323_031900_2.0_anim.tim-vel-Stereo_A.gif
http://iswa.gsfc.nasa.gov/downloads/20240323_031900_2.0_ENLIL_CONE_timeline.gif
http://iswa.gsfc.nasa.gov/downloads/20240323_031900_2.0_ENLIL_CONE_STA_timeline.gif
http://iswa.gsfc.nasa.gov/downloads/20240323_031900_2.0_ENLIL_CONE_SolO_timeline.gif


## Notes: 

These CME events (2024-03-23T01:25:00-CME-001 and 2024-03-23T01:48:00-CME-001) are associated with X1.1 flare with ID 2024-03-23T00:58:00-FLR-001 from Active Region 13614 (N25E07) which peaked at 2024-03-23T01:33Z and simultaneous flare from Active Region 13615 (S14E15) (see notifications 20240323-AL-001 and 20240323-AL-002), as well as with SEP at SOHO with ID 2024-03-23T06:49:00-SEP-001 (see notification 20240323-AL-006), SEP at GOES with ID 2024-03-23T08:15:00-SEP-001 (see notifications 20240323-AL-003, 20240323-AL-005), and SEP at STEREO A with ID 2024-03-23T09:55:00-SEP-001 (see notifications 20240323-AL-004 and 20240323-AL-006).

These CME events are still under analysis and updates will be provided when available.


SCORE CME typification system:
S-type: CMEs with speeds less than 500 km/s
C-type: Common 500-999 km/s
O-type: Occasional 1000-1999 km/s
R-type: Rare 2000-2999 km/s
ER-type: Extremely Rare >3000 km/s


Community Coordinated Modeling Center Database Of Notifications, Knowledge, Information (CCMC DONKI) Disclaimer

Data and/or information stored within the CCMC DONKI is provided \"as is\" without any warranty of any kind, either expressed, implied, or statutory, including, but not limited to, any warranty that the data and/or information will conform to specifications, any implied warranties of merchantability, fitness for a particular purpose, or freedom from infringement, any warranty that the information will be error free, or any warranty that documentation, if provided, will conform to the data and/or information. In no event shall the United States Government, or its contractors or subcontractors, be liable for any damages, including, but not limited to, direct, indirect, special or consequential damages, arising out of, resulting from, or in any way connected with this information, whether or not based upon warranty, contract, tort, or otherwise, whether or not injury was sustained by persons or property or otherwise, and whether or not loss was sustained from, or arose out of the results of, or use of, the data and/or information. The United States Government disclaims all warranties and liabilities regarding third party data and/or information, if present in the data and/or information generated and/or compiled by CCMC DONKI, and distributes it \"as is\".

Use of data and/or information stored within the CCMC DONKI does not, in any manner, constitute an endorsement by NASA of any test results, resulting designs, hardware, or other matters. Use of data and/or information stored within the CCMC DONKI does not, in any manner, constitute the grant of a license to RECIPIENT under any NASA copyright, patent, patent application or other intellectual property.

The terms of this disclaimer shall be construed, and the legal relations between the parties hereto shall be determined, in accordance with United States federal law.

NOAA's Space Weather Prediction Center is the United States Government official source for space weather forecasts. This \"Experimental Research Information\" consists of preliminary NASA research products and should be interpreted and used accordingly."
    },
    {
      "predictedMethodName": "ELEvo",
      "submissionTime": "2024-03-23T17:21Z",
      "predictedArrivalTime": "2024-03-24T12:30Z",
      "uncertaintyMinusInHrs": 5.58,
      "uncertaintyPlusInHrs": 5.58,
      "confidenceInPercentage": null,
      "predictedMaxKpLowerRange": null,
      "predictedMaxKpUpperRange": null,
      "predictedDstMin": null,
      "predictedDstMinTime": null,
      "differenceInHrs": "-1.67",
      "leadTimeInHrs": "20.82",
      "predictionNote": "CME input parameters:
Apex direction (deg): +5.0
Inverse ellipse aspect ratio: 0.7
Angular half width (in ecliptic, deg): 35

initial CME speed: 1572.0 (+/- 50) km/s
initial height: 21.5 R_sun
initial time: 2024-03-23T03:50Z
drag parameter: 0.1e-7 (+/- 0.025e-7) /km 
ambient solar wind speed: 400 (+/- 50) km/s
time step: 10 min
ensemble members: 50k"
    },
    {
      "predictedMethodName": "CMEFM v.0.1",
      "submissionTime": "2024-03-23T18:33Z",
      "predictedArrivalTime": "2024-03-24T16:09Z",
      "uncertaintyMinusInHrs": 2.22,
      "uncertaintyPlusInHrs": 1.97,
      "confidenceInPercentage": null,
      "predictedMaxKpLowerRange": null,
      "predictedMaxKpUpperRange": null,
      "predictedDstMin": null,
      "predictedDstMinTime": null,
      "differenceInHrs": "1.98",
      "leadTimeInHrs": "19.62",
      "predictionNote": "Time of Launch: 2024/03/23 01:16Z
Plane of Sky 1: 05:00Z; 31.5Rsun; N Direction
Plane of Sky 2: 08:20Z; 31.5Rsun; S Direction
POS Difference: 3:20
POS Midpoint: 06:40Z
TOL/Midpoint Difference: 5:24

Numeric View/Impact Type: 2
POS Difference Resulted Value: ~7.2
Travel Time: ~7.2 * 5:24 = 38:53

Predicted L1 Arrival: 2024-03-24T16:09Z

Error Parameters:
 - POS Difference: 1 Hour
 - Travel Time: 5%

Notes:
Coronagraph Imagery Quality: 5/5

Forecast Creation Time: 2024/03/23 08:59Z"
    },
    {
      "predictedMethodName": "WSA-ENLIL + Cone (Met Office)",
      "submissionTime": "2024-03-23T20:26Z",
      "predictedArrivalTime": "2024-03-24T23:00Z",
      "uncertaintyMinusInHrs": 7,
      "uncertaintyPlusInHrs": 7,
      "confidenceInPercentage": null,
      "predictedMaxKpLowerRange": 5,
      "predictedMaxKpUpperRange": 7,
      "predictedDstMin": null,
      "predictedDstMinTime": null,
      "differenceInHrs": "8.83",
      "leadTimeInHrs": "17.73",
      "predictionNote": "Met Office ENLIL settings.
ENLIL version: 2.7
Resolution: medium-res (512x60x180) (X1=0.1-1.7/uniform X2=30.-150./uniform X3=0.-360./uniform)
Ambient settings: a3b2-sa1
WSA version: 4.5
GONG: mrzqs
Note that this arrival time forecast is based on the simulation but is then adjusted by a human-in-the-loop.

Please specify following CME input parameters.
Time at 21.5Rs boundary: 
Radial velocity (km/s): 
Longitude (deg): 
Latitude (deg): 
Half-angular width (deg): 

Notes: 
Space weather advisor:"
    },
    {
      "predictedMethodName": "EAM (Effective Acceleration Model)",
      "submissionTime": "2024-03-23T21:28Z",
      "predictedArrivalTime": "2024-03-24T08:59Z",
      "uncertaintyMinusInHrs": 7,
      "uncertaintyPlusInHrs": 7,
      "confidenceInPercentage": null,
      "predictedMaxKpLowerRange": null,
      "predictedMaxKpUpperRange": null,
      "predictedDstMin": null,
      "predictedDstMinTime": null,
      "differenceInHrs": "-5.18",
      "leadTimeInHrs": "16.70",
      "predictionNote": "**************************************************************************************
% Compiled module: EAM
**************************************************************************************
Most pr. speed = 1572.0 km/sec
The EAM version you are running is: v2
u_r =      1655.96
Acceleration:      -6.08703
Duration in seconds:        112306.91
Duration in days:        1.2998485
**************************************************************************************
Acceleration of the CME:  -6.09 m/s^2
Velocity of the CME at 1 AU:  972.3 km/s
Expected date and time for the arrival of the CME: 24/03/2024 Time: 08:59 UT
**************************************************************************************"
    },
    {
      "predictedMethodName": "EAM (Effective Acceleration Model)",
      "submissionTime": "2024-03-23T21:29Z",
      "predictedArrivalTime": "2024-03-25T07:41Z",
      "uncertaintyMinusInHrs": 7,
      "uncertaintyPlusInHrs": 7,
      "confidenceInPercentage": null,
      "predictedMaxKpLowerRange": null,
      "predictedMaxKpUpperRange": null,
      "predictedDstMin": null,
      "predictedDstMinTime": null,
      "differenceInHrs": "17.52",
      "leadTimeInHrs": "16.68",
      "predictionNote": "**************************************************************************************
% Compiled module: EAM
**************************************************************************************
Most pr. speed = 1572.0 km/sec
The EAM version you are running is: v3
Utilizing the upgraded version EAM_v3 [Paouris et al. 2021 - DOI: 10.1007/s11207-020-01747-4]
u_r =      899.196
Acceleration:      -1.42674
Duration in seconds:        193988.47
Duration in days:        2.2452369
**************************************************************************************
Acceleration of the CME:  -1.43 m/s^2
Velocity of the CME at 1 AU:  622.4 km/s
Expected date and time for the arrival of the CME: 25/03/2024 Time: 07:41 UT
**************************************************************************************"
    },
    {
      "predictedMethodName": "SARM",
      "submissionTime": "2024-03-23T22:02Z",
      "predictedArrivalTime": "2024-03-24T21:34Z",
      "uncertaintyMinusInHrs": null,
      "uncertaintyPlusInHrs": null,
      "confidenceInPercentage": null,
      "predictedMaxKpLowerRange": 6,
      "predictedMaxKpUpperRange": 8,
      "predictedDstMin": null,
      "predictedDstMinTime": null,
      "differenceInHrs": "7.40",
      "leadTimeInHrs": "16.13",
      "predictionNote": "CME observed at 21.5 Rs: 2024-03-23 03:35
 - Time at C2: 2024-03-23 01:48
 - Radial speed: 1571.0 km/s
 - Half angle: 46 deg
 - Eruption location: S02W09
 Inferences:
   - No flare association was found
 Predictions for Earth:
   - In-situ shock speed: 877.30 km/s
   - Shock arrival time: 2024-03-24 21:34 (i.e. predicted transit time: 43.78 hours)"
    },
    {
      "predictedMethodName": "Ensemble WSA-ENLIL + Cone (NASA M2M)",
      "submissionTime": "2024-03-24T01:00Z",
      "predictedArrivalTime": "2024-03-24T22:32Z",
      "uncertaintyMinusInHrs": 6,
      "uncertaintyPlusInHrs": 9,
      "confidenceInPercentage": 100,
      "predictedMaxKpLowerRange": 4,
      "predictedMaxKpUpperRange": 6,
      "predictedDstMin": null,
      "predictedDstMinTime": null,
      "differenceInHrs": "8.37",
      "leadTimeInHrs": "13.17",
      "predictionNote": "2-CME ensemble with CMEs with IDs 2024-03-23T01:25:00-CME-001 and 2024-03-23T01:48:00-CME-001 

Ensemble modeling estimates the spread/uncertainty in CME arrival time predictions using the WSA-ENLIL+Cone model due to uncertainties in CME input parameters.  This is achieved by measuring N CME input parameters, then performing an ensemble of N runs of WSA-ENLIL cone model.  This gives an ensemble of N CME arrival times and impact estimates.

NASA GSFC SWRC ENLIL settings:
ENLIL version: 2.7
Resolution: low2 (256x30x90)
Ambient settings: a3b1f
WSA version: 2.2
(Enlil 2.7 w/res:low2 ambient:a3b1f, WSA2.2)


Notification from: Moon to Mars Space Weather Analysis Office Notifications
##
## Message Issue Date: 2024-03-24T13:14:38Z
## Message ID: 20240324-AL-003
##
## Disclaimer: NOAA's Space Weather Prediction Center is the United States Government official source for space weather forecasts. This \"Experimental Research Information\" consists of preliminary NASA research products and should be interpreted and used accordingly.


## Summary:

BETA PRODUCT. ENSEMBLE PRODUCT IS STILL IN DEVELOPMENT MODE. PLEASE LET US KNOW IF YOU HAVE ANY SUGGESTIONS FOR MODIFICATIONS.  

Ensemble modeling update on CMEs with IDs 2024-03-23T01:25:00-CME-001 and 2024-03-23T01:48:00-CME-001 (see previous notification 20240323-AL-013). Based on analysis by the Moon to Mars Space Weather Analysis Office and heliospheric ensemble modeling carried out at the Community Coordinated Modeling Center, it is estimated that the CME may impact STEREO A. For 24 ensemble members (see notes section), simulations indicate that the leading edge of the CME will reach STEREO A between about 2024-03-24T13:59Z and 2024-03-25T04:12Z (average arrival 2024-03-24T19:28Z) for 100% of simulations.

Additionally the CME is estimated to reach NASA missions near Earth between about 2024-03-24T16:47Z and 2024-03-25T07:59Z (average arrival 2024-03-24T22:32Z) for 100% of simulations.  The ensemble-based forecast indicates that there is a 57% chance for the maximum Kp index to be in the 4-6 range (below minor to moderate).

Links to the ensemble details of the modeled event:
https://iswa.gsfc.nasa.gov/ENSEMBLE/2024-03-23_ncmes1_sims24_LAHAINA059/20240323_012500_ncmes1_sims24_LAHAINA059_anim_tim-den.gif
https://iswa.gsfc.nasa.gov/ENSEMBLE/2024-03-23_ncmes1_sims24_LAHAINA059/20240323_012500_ncmes1_sims24_LAHAINA059_arrival_Earth.gif
https://iswa.gsfc.nasa.gov/ENSEMBLE/2024-03-23_ncmes1_sims24_LAHAINA059/20240323_012500_ncmes1_sims24_LAHAINA059_Earth_stack.gif
https://iswa.gsfc.nasa.gov/ENSEMBLE/2024-03-23_ncmes1_sims24_LAHAINA059/20240323_012500_ncmes1_sims24_LAHAINA059_arrival_STA.gif
https://iswa.gsfc.nasa.gov/ENSEMBLE/2024-03-23_ncmes1_sims24_LAHAINA059/20240323_012500_ncmes1_sims24_LAHAINA059_STA_stack.gif

## Notes:
These CME events (2024-03-23T01:25:00-CME-001 and 2024-03-23T01:48:00-CME-001) are also predicted to have an impact Solar Orbiter at 2024-03-23T14:01Z, Psyche at 2024-03-27T22:00Z (minor impact) and Lucy at 2024-03-27T16:00Z (minor impact) (plus minus 7 hours) based on previous heliospheric modeling (see notifications 20240323-AL-012 and 20240323-AL-013)

Ensemble CME modeling at M2M is performed by building sets of initial CME parameters and carrying out separate simulations for each set. This approach allows a mapping of initial CME parameter uncertainties into a statistical characterization of CME arrival times and impact at locations of interest.

Description of links: For each location, the first link shows the WSA-ENLIL+Cone model animation for the median CME input parameters, the second link shows the probabilistic distribution of predicted arrival times histogram, and the third link shows a stack plot of the WSA-ENLIL+Cone modeled magnetic field, velocity, density, and temperature for all ensemble members. For missions near Earth, a histogram of the probabilistic Kp forecast is also provided.

For the full details of the modeled event, please go here:
https://iswa.gsfc.nasa.gov/ENSEMBLE/2024-03-23_ncmes1_sims24_LAHAINA059/Detailed_results_20240323_012500_ncmes1_sims24_LAHAINA059.txt


Community Coordinated Modeling Center Database Of Notifications, Knowledge, Information (CCMC DONKI) Disclaimer

Data and/or information stored within the CCMC DONKI is provided \"as is\" without any warranty of any kind, either expressed, implied, or statutory, including, but not limited to, any warranty that the data and/or information will conform to specifications, any implied warranties of merchantability, fitness for a particular purpose, or freedom from infringement, any warranty that the information will be error free, or any warranty that documentation, if provided, will conform to the data and/or information. In no event shall the United States Government, or its contractors or subcontractors, be liable for any damages, including, but not limited to, direct, indirect, special or consequential damages, arising out of, resulting from, or in any way connected with this information, whether or not based upon warranty, contract, tort, or otherwise, whether or not injury was sustained by persons or property or otherwise, and whether or not loss was sustained from, or arose out of the results of, or use of, the data and/or information. The United States Government disclaims all warranties and liabilities regarding third party data and/or information, if present in the data and/or information generated and/or compiled by CCMC DONKI, and distributes it \"as is\".

Use of data and/or information stored within the CCMC DONKI does not, in any manner, constitute an endorsement by NASA of any test results, resulting designs, hardware, or other matters. Use of data and/or information stored within the CCMC DONKI does not, in any manner, constitute the grant of a license to RECIPIENT under any NASA copyright, patent, patent application or other intellectual property.

The terms of this disclaimer shall be construed, and the legal relations between the parties hereto shall be determined, in accordance with United States federal law.

NOAA's Space Weather Prediction Center is the United States Government official source for space weather forecasts. This \"Experimental Research Information\" consists of preliminary NASA research products and should be interpreted and used accordingly."
    },
    {
      "predictedMethodName": "Cone + HAF (SEPC, NSSC, CAS)",
      "submissionTime": "2024-03-24T02:40Z",
      "predictedArrivalTime": "2024-03-24T12:00Z",
      "uncertaintyMinusInHrs": null,
      "uncertaintyPlusInHrs": null,
      "confidenceInPercentage": 80,
      "predictedMaxKpLowerRange": 6,
      "predictedMaxKpUpperRange": 8,
      "predictedDstMin": null,
      "predictedDstMinTime": null,
      "differenceInHrs": "-2.17",
      "leadTimeInHrs": "11.50",
      "predictionNote": "predicted CME shock arrival time: 2024-03-24T12:00Z
Confidence that the CME will arrive: 80%
Kp Range: 6-8"
    },
    {
      "predictedMethodName": "IZMIRAN",
      "submissionTime": "2024-03-24T07:21Z",
      "predictedArrivalTime": "2024-03-25T09:40Z",
      "uncertaintyMinusInHrs": 17,
      "uncertaintyPlusInHrs": 17,
      "confidenceInPercentage": null,
      "predictedMaxKpLowerRange": 5,
      "predictedMaxKpUpperRange": 7,
      "predictedDstMin": null,
      "predictedDstMinTime": null,
      "differenceInHrs": "19.50",
      "leadTimeInHrs": "6.82",
      "predictionNote": "Initial CME velocity = 1000 km/s
Background SW velocity = 500 km/s
Heliolongitude = 0 deg"
    },
    {
      "predictedMethodName": "Average of all Methods",
      "submissionTime": "2024-03-24T14:02Z",
      "predictedArrivalTime": "2024-03-24T20:00Z",
      "uncertaintyMinusInHrs": null,
      "uncertaintyPlusInHrs": null,
      "confidenceInPercentage": 90,
      "predictedMaxKpLowerRange": 5.33333,
      "predictedMaxKpUpperRange": 7.33333,
      "predictedDstMin": null,
      "predictedDstMinTime": null,
      "differenceInHrs": "5.83",
      "leadTimeInHrs": "0.13",
      "predictionNote": "This is the auto generated average of all submitted predictions for this CME"
    }
  ]
}