Welcome to the new CCMC website!

Please note that some pages may have moved during the migration. If you experience any issues with the new website, please reach out to gsfc-ccmc-support@lists.hq.nasa.gov.

Last Updated: 04/19/2022

Exoplanetary CCMC

Background and objectives

With the advent of the Kepler mission, the landscape of exoplanetary science has undergone significant changes. Recent discoveries have opened new opportunities to study new effects of extreme space weather introduced by G, K, and M dwarf stars and on exoplanets around them. With over 2000 confirmed exoplanets, now is the time to leverage interdisciplinary expertise from astrophysicists, Solar System scientists, Earth systems scientists, and heliophysicists for the development of community modeling and analysis tools, and for the application of these tools to the prediction and interpretation of spaceflight measurements of habitable environments in support of the search for life in and beyond the Solar System.

The Exoplanetary CCMC (Exo-CCMC) project supported by GSFC Code 600 seeks to initiate the establishment of collaborations across the Heliophysics Science, Earth Science, Planetary Science and Astrophysics Divisions to create a new unique branch of the CCMC. Exo-CCMC will incorporate the library of astrophysical, atmospheric and magnetospheric tools to support the needs of the broader astrophysical and planetary science communities in modeling pertaining to exoplanetary research. Exo-CCMC will enable, support and perform research utilizing the existing state-of-the-art stellar, planetary and heliospheric models extended into the parameter space applicable for exoplanetary research.

The Exo-CCMC will provide a unique capability to simulate user-specified scenarios for astrophysical, planetary and exoplanetary communities. The hosted models will aid in analyses of data from existing and upcoming NSF, NASA, and ESA astrophysics and exoplanetary missions.

Initial capacity

Modeling exoplanetary space weather requires adapting our current models of Solar System space weather to other planetary systems. This development requires tools that can adequately describe the scenarios for evolution of stars in the main sequence and their habitable zones. Detailed analyses also require characterization of the state of planetary magnetospheres in response to various conditions introduced by stellar winds and stellar coronal mass ejections. This problem becomes especially important for modeling planetary climates and habitability of exoplanets in response to severe space weather.

In the initial Exo-CCMC capacity established on this site, users are able to view and analyze simulations carried out with three different models: SWMF, PWOM and ALF3D. These simulations are used to demonstrate how models hosted at Exo-CCMC can be used to explore exoplanetary problems. Please follow the links to individual models below for more details and to access the simulation results.

Next Phase: 1D Simulations of Exoplanetary Atmospheres

With the upcoming launch of JWST and plans for future exoplanet-focused observatories such as WFIRST, there is significant interest in the community for a toolset to simulate photometric and spectroscopic observations of exoplanets to better understand the science return we can expect. The next phase of the Exo-CCMC will focus on implementing several different models for simulating observations of exoplanet atmospheres with the next generation of space telescopes.

The Planetary Spectrum Generator is an ease-of-use online tool that can ingest a broad range of spectroscopic information and employs modern models to synthesize accurate planetary fluxes. Such tool can be used to plan observations (e.g., proposals, mission planning), to interpret current and future exoplanetary data, to develop new instrument/telescope concepts, to calibrate spectroscopic data, and to identify sources of error and spectral confusion. See the link below to access the simulator.

The Exo-CCMC Science Team

Team Leads: Avi Mandell (NASA GSFC Code 693) and Antti Pulkkinen (NASA GSFC Code 674)
Team Deputies: William Danchi (NASA GSFC Code 667), Shawn Domagal-Goldman (NASA GSFC Code 699), and Tony Del Genio (NASA GSFC Code 611)
Team members: Maria Kuznetsova (NASA GSFC Code 674), Alex Glocer (NASA GSFC Code 673), Melvyn Goldstein (NASA GSFC Code 672), Arcadi Usmanov (University of Delaware and NASA GSFC Code 673), George Khazanov (NASA GSFC Code 673), Lutz Rastaetter (NASA GSFC Code 674), Vladimir Airapetian (The Catholic University of America and NASA GSFC Code 671), Geronimo Villanueva (NASA GSFC Code 693), Natasha Batalha (693), Giada Arney (699)

Simulations

SWMF Runs

Runs for extreme conditions:

  • 3D global magnetospheric MHD time-dependent fully non-linear simulations of an interaction of the extreme super CME event with the magnetosphere of early Earth at the time of the origin of life on our planet 3.8 billion years ago. The characteristic total (kinetic + magnetic) energy of the simulated CME event is by a factor of 8 greater than the energy in the Carrington CME event occurred on Sept 1-2, 1859. These simulations are representative of magnetic activity conditions characterized by frequent and energetic CME events forming in the dense and magnetized corona of the young Sun at 0.7 Gyr. The boundary conditions are similar to those used in Ngwira et al (2014), but the initial density and velocity of the steady state solar wind are by a factor of 2 greater than that observed in the solar wind from the current Sun as described in Airapetian et al. (2016).
  • Extreme conditions executed SWMF run
  • Ngwira, C. M., A. Pulkkinen, M. M. Kuznetsova, and A. Glocer (2014), Modeling extreme “Carrington-type” space weather events using three-dimensional global MHD simulations, J. Geophys. Res. Space Physics, 119, 4456–4474, doi:10.1002/2013JA019661.
  • Airapetian, V. S., Glocer, A., Gronoff, G., Hebrard, E. and Danchi, W. (2016), Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun", Nature Geoscience, accepted.

SWMF EXO runs with different dipole tilts and strength

Run NumberKeywordModelModel VersionVxN|B|IMF Clock AngleBxByBzConductance Model (p-Pedersen; h-Hall)Dipole Tilt (in X-Z Plane) at startDipole Strength (Dm/Dm_earth)Density at inner bndryTemperature at inner bndry
HSS2013_SWMF_060913_8HSS2013, EXO, Dipole Strenth Variation, Normal Dipole Strength, Dm=Dm_earthSWMFv20110131-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=10.3, h=14.211.001.00050.03000
HSS2013_SWMF_060913_8aHSS2013, EXO, Dipole Strenth Variation, Reduced Dipole Strength, Dm=0.2*Dm_earthSWMFv20110131-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=10.3, h=14.211.000.20050.03000
HSS2013_SWMF_060913_8bHSS2013, EXO, Dipole Strenth Variation, Reduced Dipole Strength, Dm=0.05*Dm_earthSWMFv20110131-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=10.3, h=14.211.000.05050.03000
HSS2013_SWMF_060913_8cHSS2013, EXO, Dipole Strenth Variation, Increased Dipole Strength, Dm=2.*Dm_earthSWMFv20110131-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=10.3, h=14.211.002.00050.03000
HSS2013_SWMF_060913_8dHSS2013, EXO, Dipole Strenth Variation, Reduced Dipole Strength, Dm=0.05*Dm_earth, Tilt=90SWMFv20110131-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=10.3, h=14.290.000.05050.03000
Anthony_Sciola_20160808_GM-EXO_3.75 1SWMFv20140611-600.0000015.0000025.00000180.000000.000000.00000-25.00000constant , p=5.0, h=0.00.000.75050.03000
Vladimir_Airapetian_20161026_GM-EXO_1Earth, magnetosphereSWMFv20140611-600.0000030.0000028.28000135.0000020.0000020.00000-20.00000constant , p=5.0, h=0.011.001.00050.03000
Eric_Blackman_20161229_GM-EXO_1flux pileupSWMFv20140611-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=50.0, h=0.012.001.0005.05000
Eric_Blackman_20161231_GM-EXO_2flux pileupSWMFv20140611-400.0000050.000005.00000180.000000.000000.00000-5.00000constant , p=1.0, h=0.00.001.000500.05000
Eric_Blackman_20161231_GM-EXO_3flux pileupSWMFv20140611-400.0000050.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.000.05050.05000
Eric_Blackman_20170113_GM-EXO_1flux pileupSWMFv20140611-400.0000050.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.000.0505.03000
Eric_Blackman_20170113_GM-EXO_3flux pileup customSWMFv20140611-400.0000050.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.000.0505.01500
Vladimir_Airapetian_20170109_EXO_1Mars, magnetosphereSWMFv20140611-400.000002.000005.000000.000000.000000.000003.00000none , p=0.0, h=0.00.000.0100.00
Vladimir_Airapetian_20170109_EXO_2Mars, magnetosphereSWMFv20140611-400.000002.000005.000000.000000.000000.000003.00000none , p=0.0, h=0.00.000.0100.00
Vladimir_Airapetian_20170109_EXO_3Mars, magnetosphereSWMFv20140611-400.000002.000005.000000.000000.000000.000003.00000none , p=0.0, h=0.00.000.0100.00
Vladimir_Airapetian_20170127_EXO_2Mars, magnetosphereSWMFv20140611-1000.0000020.000005.000000.000000.000000.00000100.00000none , p=0.0, h=0.00.000.0100.00
Vladimir_Airapetian_20170127_EXO_3Mars, magnetosphereSWMFv20140611-1000.0000020.000005.000000.000000.000000.00000100.00000none , p=0.0, h=0.00.000.2000.00
Gabor_Facsko_20170131_GM-EXO_1Exoplanet, red dwarfSWMFv20140611-999.000005.000001.00000180.000005.000000.00000-1.00000constant , p=5.0, h=0.0-80.000.10050.03000
Vladimir_Airapetian_20170127_EXO_4Mars, magnetosphereSWMFv20140611-1000.0000020.000005.000000.000000.000000.00000100.00000none , p=0.0, h=0.00.001.0000.00
Joe_Llama_20170201_GM-EXO_1Star-Planet interactionsSWMFv20140611-400.000005.0000050.2500095.7100050.0000050.00000-5.00000constant , p=5.0, h=0.045.001.000300.02000
Vladimir_Airapetian_20170127_EXO_5Mars, magnetosphereSWMFv20140611-1000.0000020.000005.000000.000000.000000.00000100.00000none , p=0.0, h=0.00.0010.0000.00
Vladimir_Airapetian_20170127_EXO_1Mars, magnetosphereSWMFv20140611-1000.0000020.00000100.000000.000000.000000.00000100.00000none , p=0.0, h=0.00.000.0100.00
Vladimir_Airapetian_20170306_GM-EXO_1strong magnetic fieldSWMFv20140611_mach_lt_1-200.0000010000.00000150000.00000180.000000.000000.00000-150000.00000constant , p=5.0, h=0.00.001.000100.03000
Vladimir_Airapetian_20170310_GM-EXO_1100 percent stellar wind magnetic fieldSWMFv20140611_mach_lt_1-700.0000010000.0000030000.00000180.000000.000000.00000-30000.00000constant , p=5.0, h=0.00.001.000200.03000
Vladimir_Airapetian_20170310_GM-EXO_21 percent strength stellar wind magnetic fieldSWMFv20140611-700.00000100.00000300.00000180.000000.000000.00000-300.00000constant , p=5.0, h=0.00.001.00050.03000
Vladimir_Airapetian_20170310_GM-EXO_31 percent strength stellar wind magnetic fieldSWMFv20140611-1000.00000100.00000300.00000180.000000.000000.00000-300.00000constant , p=5.0, h=0.00.001.000200.03000
Camilla_Harris_20170317_GM-EXO_1paleomagnetosphereSWMFv20140611-450.000006.600005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.0-45.000.25050.03000
Camilla_Harris_20170317_GM-EXO_2paleomagnetosphereSWMFv20140611-450.000006.600005.00000180.000000.000000.00000-5.00000constant , p=40.0, h=63.0-45.000.25050.03000
Vladimir_Airapetian_20170321_GM-EXO_1Flipped case1SWMFv20140611-900.00000100.00000212.00000179.730001.000001.00000-212.00000constant , p=5.0, h=0.090.001.000100.05000
Vladimir_Airapetian_20170321_GM-EXO_2Flipped case2SWMFv20140611-900.00000100.00000212.00000180.000000.000000.00000-212.00000constant , p=5.0, h=0.090.000.500100.05000
Jonas_Toupal_20170801_GM-EXO_2aurora, CME, stellar windSWMFv20140611-370.000002000.00000140.000000.000000.000000.00000140.00000constant , p=5.0, h=0.00.001.00050.03000
Jonas_Toupal_20170804_GM-EXO_1aurora, CME, stellar windSWMFv20140611-370.000002000.00000413.56000-65.73000-1970.00000-377.00000170.00000constant , p=5.0, h=0.00.001.00050.03000
Michael_Alaimo_20171021_GM-EXO_1TestingSWMFv20140611-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.001.00050.03000
SrijanBharati_Das_20171221_GM-EXO_1Steady State trialSWMFv20140611-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.000.10050.03000
Vladimir_Airapetian_20180103_GM-EXO_1CIR_dipole1SWMFv20140611-800.000002000.0000015.000000.000000.000000.0000015.00000constant , p=5.0, h=0.023.001.00050.03000
Vladimir_Airapetian_20180103_GM-EXO_2CIR_dipole2SWMFv20140611-800.000002000.0000015.000000.000000.000000.0000015.00000constant , p=5.0, h=0.023.000.25050.03000
Kyle_Webster_20180318_GM-EXO_1early_earth_no_dipole_tiltSWMFv20140611-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.000.12050.03000
Kyle_Webster_20180318_GM-EXO_2early_earth_with_dipole_tiltSWMFv20140611-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.011.000.12050.03000
Kyle_Webster_20180404_GM-EXO_3modern_earth_with_dipole_tiltSWMFv20140611-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.011.001.00050.03000
Kyle_Webster_20180404_GM-EXO_4modern_earth_with_45dipole_tiltSWMFv20140611-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.045.001.00050.03000
Kyle_Webster_20180327_GM-EXO_3modern_earth_with_dipole_tiltSWMFv20140611-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.011.001.00050.03000
Kyle_Webster_20180327_GM-EXO_4modern_earth_with_45dipole_tiltSWMFv20140611-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.045.001.00050.03000
Anthony_Sciola_20180723_GM-EXO_1testSWMFv20140611-1300.000001750.00000200.00000180.000000.000000.00000-200.00000constant , p=43.0, h=62.00.001.00050.03000
Vladimir_Airapetian_20180801_GM-EXO_1Bz 100000SWMFv20140611-400.00000100000.00000100000.000000.000000.000000.00000100000.00000constant , p=5.0, h=0.00.001.00050.03000
Vladimir_Airapetian_20180801_GM-EXO_2Bz 30000SWMFv20140611-400.0000030000.00000100000.000000.000000.000000.0000030000.00000constant , p=5.0, h=0.00.001.00050.03000
Vladimir_Airapetian_20180801_GM-EXO_3Bz 10000SWMFv20140611-400.00000100000.0000010000.000000.000000.000000.0000010000.00000constant , p=5.0, h=0.00.001.00050.03000
Anthony_Sciola_20180808_GM-EXO_1PCb conditionsSWMFv20180525-1300.000001750.00000200.000000.000000.000000.00000200.00000constant , p=5.0, h=0.00.001.00050.03000
Vladimir_Airapetian_20180801_GM-EXO_4Bz -10000SWMFv20140611-400.00000100000.0000010000.00000180.000000.000000.00000-10000.00000constant , p=5.0, h=0.00.001.00050.03000
mario_fu_20180912_GM-EXO_1southwardimfSWMFv20180525-400.0000040.0000033.00000180.000000.000000.00000-33.00000constant , p=5.0, h=0.0-20.001.00050.03000
mario_fu_20180912_GM-EXO_2northwardimfSWMFv20180525-400.0000040.0000033.000000.000000.000000.0000033.00000constant , p=5.0, h=0.0-20.001.00050.03000
Josep_Ribalta_20181020_GM-EXO_1educationalSWMFv20140611-730.0000029.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.000.28850.03000
Josep_Ribalta_20181101_GM-EXO_1educatioalSWMFv20180525-400.000003.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.000.28850.03000
Josep_Ribalta_20181102_GM-EXO_2educationalSWMFv20180525-400.000003.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.000.28850.03000
Ben_Hayworth_20190123_GM-EXO_1testSWMFv20180525-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.023.001.000100.03000
Vladimir_Airapetian_20190131_GM-EXO_3Bz 10000SWMFv20140611-400.00000100000.0000010000.000000.000000.000000.0000010000.00000constant , p=5800.0, h=0.00.001.00050.03000
Josep_Ribalta_20190217_GM-EXO_1terraformationSWMFv20180525-730.0000029.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.000.50050.03000
Josep_Ribalta_20190401_GM-EXO_1educationalSWMFv20180525-400.000003.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.000.10050.03000
Josep_Ribalta_20190401_GM-EXO_2educationalSWMFv20180525-400.000003.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.000.20050.03000
Josep_Ribalta_20190401_GM-EXO_3educationalSWMFv20180525-400.000003.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.000.30050.03000
Josep_Ribalta_20190401_GM-EXO_4educationalSWMFv20180525-400.000003.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.000.40050.03000
Josep_Ribalta_20190401_GM-EXO_5educationalSWMFv20180525-400.000003.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.000.50050.03000
Josep_Ribalta_20190401_GM-EXO_6educationalSWMFv20180525-400.000003.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.000.60050.03000
Josep_Ribalta_20190401_GM-EXO_7educationalSWMFv20180525-400.000003.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.000.70050.03000
Josep_Ribalta_20190401_GM-EXO_8educationalSWMFv20180525-400.000003.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.000.80050.03000
Josep_Ribalta_20190401_GM-EXO_9educationalSWMFv20180525-400.000003.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.000.90050.03000
Josep_Ribalta_20190401_GM-EXO_10educationalSWMFv20180525-400.000003.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.001.00050.03000
Brandon_Smith_20190425_GM-EXO_1magnetosphereSWMFv20180525-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.015.001.00050.03000
Suleiman_Baraka_20190429_GM-EXO_1MPSWMFv20180525-500.000005.000005.00000180.000000.100000.00000-5.00000constant , p=5.0, h=0.031.000.50050.03000
Vladimir_Airapetian_20190722_GM-EXO_1low dipoleSWMFv20180525-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.000.01050.03000
Suleiman_Baraka_20190728_GM-EXO_10.01 AUSWMFv20180525-400.000004000.0000017.000000.000000.000000.0000017.00000constant , p=5.0, h=0.00.001.00050.03000
Vladimir_Airapetian_20191125_GM-EXO_11MJSWMFv20180525-400.00000100000.00000100000.000000.000000.000000.00000100000.00000constant , p=324.0, h=0.00.000.0000.00
Vladimir_Airapetian_20191125_GM-EXO_22MJSWMFv20180525-400.00000100000.00000100000.000000.000000.000000.00000-10000.00000constant , p=324.0, h=0.00.000.0000.00
Vladimir_Airapetian_20191125_GM-EXO_30.5MJSWMFv20180525-400.00000100000.00000100000.000000.000000.000000.00000-10000.00000constant , p=324.0, h=0.00.000.0000.00
Vladimir_Airapetian_20191126_GM-EXO_11MJSWMFv20180525-400.00000100000.00000100000.00000180.000000.000000.00000-100000.00000constant , p=324.0, h=0.00.000.0000.00
Vladimir_Airapetian_20191126_GM-EXO_22MJSWMFv20180525-400.00000100000.00000100000.00000180.000000.000000.00000-100000.00000constant , p=324.0, h=0.00.000.0000.00
Vladimir_Airapetian_20191126_GM-EXO_30.5MJSWMFv20180525-400.00000100000.00000100000.00000180.000000.000000.00000-100000.00000constant , p=324.0, h=0.00.000.0000.00
moises_rojas_20200412_GM-EXO_1mikjaelSWMFv20180525-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.001.00050.03000
Fernando_Molina_20200412_GM-EXO_1earth EMSWMFv20180525-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.001.00050.03000
Adam_Boldog_20200416_GM-EXO_1non-thermal escape exoplanetary magnetic fieldSWMFv20180525-470.0000065900.00000167.84000151.14000381.0000081.00000-147.00000constant , p=5.0, h=0.00.001.00050.03000
Francesco_Lopez_20200603_GM-EXO_1krySWMFv20180525-400.000005.000005.04000173.160000.500000.60000-5.00000constant , p=5.0, h=0.00.001.00050.03000
Guowei_Wang_20200918_GM-EXO_1maunder minimumSWMFv20180525-400.000008.000003.00000180.000000.000000.00000-3.00000constant , p=5.0, h=0.06.000.75350.03000
Yury_Sasunov_20210414_GM-EXO_1Earthlike PlanetSWMFv20180525-497.000005.5700020.00000180.000000.000000.00000-20.00000constant , p=5.0, h=0.00.000.60050.03000
Carlos_Caballero_20210422_GM-EXO_1EjemploSWMFv20180525-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.001.00050.03000
michelle_mendoza_20210526_GM-EXO_1testSWMFv20180525-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.001.00050.03000
michelle_mendoza_20210526_GM-EXO_2testSWMFv20180525-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.001.00050.03000
michelle_mendoza_20210526_GM-EXO_3testSWMFv20180525-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.001.00050.03000
John_John_20211120_GM-EXO_11SWMFv20180525-400.000005.000005.00000180.000000.000000.00000-5.00000constant , p=5.0, h=0.00.001.00050.03000
jie_luo_20211201_GM-EXO_3BATSRUSSWMFv20180525-400.000005.00000300.04000-90.95000-500.00000-300.00000-5.00000constant , p=5.0, h=0.00.001.00050.03000
jie_luo_20211222_GM-EXO_11SWMFv20180525-637.000001950.0000028.64000167.91000-69.000006.00000-28.00000constant , p=5.0, h=0.00.001.00050.03000
jie_luo_20211222_GM-EXO_2MHDSWMFv20180525-470.0000065900.00000167.84000151.14000381.0000081.00000-147.00000constant , p=5.0, h=0.00.001.00050.03000

PWOM runs

Model Description

The Kinetic electron Polar Wind Outflow Model (KePWOM) is a model of ionospheric outflow, the escape of ions from the ionosphere, which treats the ions and thermal electrons as a fluid and the superthermal population with an embedded kinetic model of the Landau-Boltzmann equation (Glocer et al., 2015). This code is a combination of two models the Polar Wind Outflow Model (Glocer et al. 2007,2009,2012) and the Super Thermal Electron Transport Code (summarized in the book by Khazanov 2011). It is well accepted that the ionosphere is a critical source of plasma for the magnetosphere, providing O+, H+, and He+ which can have wide ranging consequences for the space environment system. This code models many of the processes leading to this outflow along one field line. Multiple convecting field lines can also be used to reconstruct the 3D picture of the outflow. The code has recently been applied to other ionospheres including Saturn and Jupiter and to look at mass loss from early Earth and exoplanets.

References:

  • Glocer, A., T. I. Gombosi, G. Toth, K. C. Hansen, A. J. Ridley, and A. Nagy (2007), Polar wind outflow model: Saturn results, J. Geophys. Res., 112, doi:10.1029/2006JA011755.
  • Glocer, A., G. Toth, T. Gombosi, and D. Welling (2009a), Modeling ionospheric outflows and their impact on the magnetosphere, initial results, J. Geophys. Res., 114(A05216), doi:10.1029/2009JA014053.
  • A. Glocer, N. Kitamura, G. Toth, and T. Gombosi, Modeling Solar Zenith Angle Effects in the Polar Wind, J. Geophys. Res, 117, A04318, doi:10.1029/2011JA017136, 2012.
  • A. Glocer, G. Khazanov, , C. Harris, and M. Liemohn, The role of soft electron precipitation and ponderomotive force in the generation of ionospheric outflow in the cusp and polar regions, AGU Presentation, 2015.
  • Khazanov, G. (2011), Kinetic Theory of the Inner Magnetospheric Plasma, Astrophysics and space science library, Springer

ALF3D runs

See the ALF3D model description [PDF]

ALF3D runs

The output file is from a fully 3D MHD coronal simulation run that is a part of the M1 (Young Sun at 0.7 Gyr) scenario described in Airapetian and Usmanov (Astrophys. J. Lett., 817, L24, 2016). The coronal model region extends from 1 to 20 solar radii. The input parameters for the coronal simulation: the dipole magnetic field on the Sun with the polar strength of 54.9 G, the number density and temperature at the coronal base in open field regions are 5·108 particles cm-3 and 1.8 MK, respectively, the driving amplitude of Alfvén waves is 100 km s-1, and the solar rotation period is 5.1 days.

Exoplanet Modeling and Analysis Center (EMAC)

Exo-CCMC is participating the Exoplanet Modeling and Analysis Center (EMAC) collaboration. To access EMAC, please click here.