Global Magnetosphere Real Event Analysis from Runs on Request     (VMR Tools)
Analysis of Run: Katrina_Magno_071511_1 | |
Satellite Data Available |
Data-Model Comparison |
Model on Satellite Track |
Run information: |
|
|
|
View standard CCMC run page. | ?? |
Event Date | | January 26 2009 |
Start Time | | 2009/01/26 10:20 |
End Time | | 2009/01/26 12:00 |
Key Words | | Magnetosphere2009 |
Model | | BATSRUS with RCM |
Model Version | | v8.01 |
Validation Level | | 0 |
Coordinate System for Input | | GSM |
Coordinate System for Output | | GSM |
Dipole Tilt, in the X-Z Plane, at Start deg | | -20.10 |
Dipole Tilt, in Y-Z GSE plane, deg | | 2.80 |
Update Dipole Orientation with Time | | yes |
Inflow Boundary R_E | | 33 |
F10.7 | | 68.00000 |
Conductance Model | | auroral |
Corotation | | yes |
Run Number | | Katrina_Magno_071511_1 |
Minimum Dst Value | | 8 |
SW Source | | DSCOVR-realtime |
Diagnostic Indices | | YES, plot them |
|
View interactive javascript plot of satellite positions during this run in a new window.
Model values plot for Wind for time period of this run.
Choose variable to plot:
![](data: image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAyAAAAEsCAIAAAC0T0BtAAAAEXRFWHRTb2Z0d2FyZQBBdXRvcGxvdGfxHnYAAAAqdEVYdENyZWF0aW9uIFRpbWUAVGh1IFNlcCAxNCAxNDoyNDowMSBFRFQgMjAxNw/uk3sAAAGldEVYdHBsb3RJbmZvAHsgInNpemUiOls4MDAsMzAwXSwKICAibnVtYmVyT2ZQbG90cyI6MSwKICAicGxvdHMiOiBbCiAgewogICAgInRpdGxlIjoiS2F0cmluYV9NYWdub18wNzE1MTFfMTogQkFUU1JVU193aXRoX1JDTSBwbG90IG9mIHJobyBhbG9uZyBXaW5kIHRyYWplY3RvcnkuIiwgCiAgICAieGF4aXMiOiB7ICJsYWJlbCI6IiIsICJtaW4iOiIyMDA5LTAxLTI2VDEwOjIwOjAwLjAwMFoiLCAibWF4IjoiMjAwOS0wMS0yNlQxMjowMDowMC4wMDBaIiwgImxlZnQiOjc4LCAicmlnaHQiOjcyMiwgInR5cGUiOiJsaW4iLCAidW5pdHMiOiJVVEMiIH0sCiAgICAieWF4aXMiOiB7ICJsYWJlbCI6InJobyIsICJtaW4iOjAuMCwgIm1heCI6MTAwLjAsICJ0b3AiOjUyLCAiYm90dG9tIjoyNDgsICJ0eXBlIjoibGluIiwgInVuaXRzIjoiIiB9CiAgfQogXX0Ce0CXAAAABGdBTUEAAK/INwWK6QAAJhFJREFUeJzt3XtwVOX5wPGQgASQuBvDVRJAxGoH1GbUMU2sgIhV1HobDQqKg5YWdaStuSgXtVWsjngbNNEUbccbalW8xZbaYqtSLRasVBBUlCIVEjEK2mDEze+ZPfM7c9zdc3Zzcjb77j7fzx/Muy/n8j7ve/Y8z2422bxOAAAABCov0wMAAADINRRYAAAAAaPAAgAACBgFFgAAQMAosAAAAAJGgQUAABAwCiwAAICAUWABAAAEjAILAAAgYBRYAAAAAaPAAgAACBgFFgAAQMAosAAAAAJGgQUAABAwCiwAAICAUWABAAAEjAILAAAgYBRYAAAAAaPAAgAACBgFFgAAQMAosAAAAAJGgQUAABAwCiwAAICAUWABAAAEjAILAAAgYBRYAAAAAaPAAgAACBgFFgAAQMAosAAAAAJGgQUAABAwCiwA2ScvLwvuXekY5KpVq8aOHZv0yOk4dVbMuS27RoucxCWoHbchmMzt+syK6zYdg6yqqnryySczcurMznlXzx7gaLPiYoOBuG6yj/PZ/tZbbw0bNuyWW25Jcft0k3N997vfjUQido+0Dz300MzeoWQMtbW1oVAoHA7X19fbw8v7tqKiInsXu9N5nJjtE/5XzKnd+hPyt3GvXr2GDBlSXV29detW5wY333xzQUGB/Os2fvtcn332mUzL2LFj+/XrJ1P0ox/96MUXX4zZZf/99586deqmTZvs/oRDshoeB/QtfsK7tG/CKMSGDRvOPPPM4uLiffbZ58gjj3z88cftXbp/JafjfSa5Svfs2dP9U/uQpmdxS0vL4MGDnUGdfvrpdru9vX3QoEGyTVcP632J9gDKMnAFZB/7ebtq1SrJrA899FCK2/cAOZdkqWeeecbueeqpp6Qns/eaxsbG8vLyzVHSaGpqit/m1ltvvfLKK2M6u5rUA3m7JfUCy2p8880327Zt+8UvflFVVWX/r3SOHj36zjvvPPDAA6XtfYoTTzzxkksukbLjq6++kkz26KOPHnfccTFbfvLJJwsWLKioqPAYpN3pcUDfullgWY2YKGSE8gyS1ydbtmyRBP/aa6+dddZZ9i7dv5LTUWB19fIIUPqexVKCP/bYY1Z7586d+fn5ra2t1sOHH35Y/tfHMSmwkHFcAdnHet6uWLFi6NChf/rTn+z+jRs3SnqQ1+LyGveMM86w7lDx77hIQ4qJESNG9OrVq9NxF5BGQ0PDyJEjCwsLjznmmHXr1nkc1mNscqOsrKy0e+RQjz/+uH0Wt6NJevvJT34i/ZLwbrrppqSjku2vuOKKIVHS8H5NLwm1ubnZakvDOTyL1AFSjnz00UcJp9rtYcLwu9Sf4sappIrPPvusX79+9sPnnntOSklpHHXUUc8//7z3vrKj7J50MLt27bJP4T0kjwPGGzNmzL///W+r/dvf/tZqSI/028dMeBknvDC6FMV55513/fXXu+3ifSXHbCwX7eDBg+UCvvTSS+Vyijlvwss1Piinru4S/7z2/cRxe5J6h+N90oTPbpsUr6eccorVfvbZZ2WDp59+2no4ZcoU+d/OFO5UMu1z5syxznLzzTcnnCLvm2HSwOW1yq9+9atRo0aFw+GLLrroiy++sPq//vprKdzLyspCoZD184T4c3lMmj2GY4899pFHHrEHLHX/sGHDUn8qwTQUWNlHnpC///3vS0tL//nPfzr7DzvssL/85S//+9//5Al52WWXXXzxxfb2MbvLK8Jt27bF/K80Tj/99A8++EDuGtddd52dWtwO6zY2uQeNHTv21VdflYcrV66UtvTYZ3E72vz580866aRtUXJLTToquZ1Nnjx5a9TEiRMXLlzoMSq5Xdr3ypaWFrkJxmzQ1NQkt8uE4cQ8LCkp6d+//7hx4+644469e/d6b5+0P8WNvasZmd6PP/64rq7O+S7RySeffN9990nj/vvvl7b3AWXmzznnnFdeeUXWxW3LnTt3yhodffTRqQzJ44DxJCnefffd0pClHDhwoBRA0r7rrrukUun89vUZc66EF0ZCblFIqnv//ffddvG+kmM2lqvxoyhpXHvttTHndbtcPS6Mru4S/7z2/cRJeifxGFvCk7o9u20dHR1SSezYsUPa9fX1sk1tba20ZT7lZaT8b2cKd6prrrnGWgVrVKm8LImZtKSBL168+Pjjj9+8efOnn346ffr0n//851a/lOkTJkx47733pH/u3LkJz+UxafYY/vCHPxx66KH2W86zZs369a9/HR8FsgUFVvaRJ2Tv3r2feOIJj20+//xzeUlkbx+z+4cffuh8aDckT1vtL7/80vl2SMLDuo1N/r3nnntOO+20zuiPiu699974McQf7cADD9ywYYPVfvvtt5OOSraXzay2vIS13u1wk5+fb92jO6O38oKCAuf/yu3s4IMPXr9+vVs4MeSl5+rVq+W2bt9Jvbf36O/OxnnfJi+p7feBpGgYNGhQe3t75/9/hEVSgscpZCHk7n/44YcXFhbKxF555ZX2i2bnKSQFSlbzGKTd6XHAeE8//fS5554rDcklMlTrB7hSn1k/nvMosJJergnnyhmFPI+sWXKLJcUrWTrtq9F+7825sdvl6rHWXd0l/nnd/SdOp8udxGNsbidN+Ox2uuKKK2677TZpHHvssatWrbLKpkWLFkl/zNndziLDcI4qxQLLOWlJAz/kkEPeeecdq719+/aRI0da7YMOOij+PdSYc3lMmnMMRx11lPWpj02bNskAJMCEw0NWoMDKPvKEXLp0aXFx8V//+ldnv2T9SZMmSaK1EoldRsTfU5wf3fVIYN6HdRtbZ7QEkTT28MMPy7/2jza8jyaZ2H7PXHJe0lHJ9nZqlIY89BiV9ztYy5YtO/XUUz3CSWjLli3x74T1cIFltyWoefPmycRaD6WgiSm/ampqUjmFXBhSH1x44YVTp051bin98urc+ftrffr0ifnpkqyCFLJJDxhv9+7dZWVl0hg/fvxzzz33/e9/X9rSY/38JemV4B2RdxTe72B1el7JMRsnvBqTXq4ew+7qLm7P6xRH4pT0TpLi2JzbJ3x2O61du/aII4746quvxo0bJw8PPfRQ2eU73/mO9MccLcXQUiywnJOWNHAp5pxPK/uCd57a7Vwek+Ycw/LlyyXqvXv3Tps27c4774wPAVmEAiv7WM9bed0vNwL7kwqd0Rdwv/vd73bu3ClPTvnXfnpbHy+I2T3+oVu/22E9xiZuvPHG3r172+9vJz2axztYCY/fpRfi3p/Bktv6K6+84h1OvK1bt0p6TnH7dBdYnY6PFllvWdlv0ojNmzfbb2ilcoq2traBAwfGbyk15dChQ60f4Un+e+2115x7/f3vfx81alTSAyY0YcKERx991PrJnfwrOWbixIkxA0jxMk7ILYrzzjtv0aJF3ru4XckxG9tXozRSfwcrJignH+9gpfIwlSeO25M06UE8Tpr0HazO6DPxnnvumTVrlrRnzpx5yy23HH744fFH87hTOd9HTHgW76soaeBS+jifWbaxY8fGv4MVc64UJ02KLXmlIa+I5Nlkf5gPWYoCK/vYT8i//e1v+++///333289lLTx1FNPycs+eVF+1lln2ZtJcnX+/KurBZbbYb3H5tbvdrR58+bZn9I48cQTk45Ktrc/0CAvOufPn+8xqoaGBrffInz++eett0xSCae6ulrujHLXk/mUs19++eVdDT8V8RsnfS1u/XLcMccc0xn90JX9eWGbzK39+fH4Ax533HFS32zfvr2jo0OmaPbs2bJ9wi3PPvvsxsbGzuhnpCQNvPTSS59HrVy5cty4cfafhPA4YEJSvhxwwAHW6/U77rhjxIgRN910U8wAUryME3KLYtOmTXJB3nrrrXIVyTX5+uuvO3+LMJVD2Z1TpkyxPoMljfjPS7ldrjFBObnt0s0CK5UnjtuTNOlBPE6a8Nkd47bbbpMb2gMPPNAZ/XWHfffd1/qhYczR3M4iTwF7FWR4Cc/ifRUlDfz222+XI8sR5Cbw1ltvWT/aFjfccIO8SJC9nJ/BijlX6gu6bNky6fzNb36TMExkEdYs+zifaf/617+GDx9uJTapFeQFVp8+fcrKyiRX2ZstXrw4FAolvT259bsdNunYunS09vb2H//4x+FwePDgwb/85S9lA+9RyfZS31i/kiMNt0/SWORFobwiDEXV1dU535Cvqqpavnx5wgE7WZ2PPfbYYYcd1rdvX3n1KbfLmPeE4rf36HebJbeDeG9cXFx82mmnvffee9J/5JFH2m/X2Z555pmjjjrK7YB//vOfzzjjDJn8wsLC0aNHX3rppfLyPeGWf/zjH61fTpQ5lEpOzrVflDTkpX8qB0xo7dq1vXv3tv7W0Y4dO6T95ptvxgwgxcs4IbcohKRAGaoceZ999pEpcv4drFQOZXdav0UoIf/0pz91/oKY1XC7XGOCcnLbpZsFVipPHLcnadKDeJw04bM7hlwA8l/Wn3P74IMPpO3881dJl976XUXrLAl/i7Az2VWUNPBvvvlG+g855BC5CcgLDPvWIS8krr76anlhIGeXej3huVJfULkIx44d+/XXXycME1mENYNxpGqUrJzpUQCpIvmlLuue3Xv37pWKvyfPeOqppz788MM9eUakCfcFmGLu3Lkff/zxhx9+ePzxx//sZz/L9HCAVFFgJZW9z+7Vq1fbvy2Ybt98880999wzfvz4+D8OjGzEfQF+5CXSzWPefvvtI0aMGDx48CWXXOLvl5PTMarAZcUg0yTdsWdqbvWsoG/df3Znyr777mv9nbYeIBfSqFGjpKTrmdMh3bgvAAAABIwCCwAAIGAUWAAAAAHLQIGV8LMRkUiktrY2FAqFw+H6+nr7F+nd+gEAAIyVsXewYgqsxsbGhH8K0q0fAADAWKYUWG5fZuL9JScAAAAGMqXAcvs6Xu+v6e3S6QAAQMb5LRyyjCkFVn5+fkdHh9WWhv015m79bsdkRQEAMJaedGxKgdUD72D5HSkAAAiGnnRsSoGV7s9g6VlRAACMpScdm1JgNTQ0JPxtQbf++CN06XQAAKDn6UnHmfw7WM6PRkUikZqamlBUXV2d8+9gJezvpMACACDb6EnHauJMtqJr1669+OKLS0pKAvs1CaRA6uYjjzxyyZIlPXMZAAAyK48CK8ckXdFDDjnklltuaWtr69JeeiScCrf5SX3eZMKXL19+xBFHvPjii/4HBwDIEnoSq5o4k62obPD11193da8M6uGxWaeLOWn3CyzLu+++O2rUKN9jAwBkC5MTa7DUxJlCgdWdzm6ePU37Bqj772B5B2JImACAtNJzt1cTZ1cKrHvvvbeoqOjCCy+0O6XRt2/fSy+91P7wUEy/tM8999w+ffpY//XEE0+MGDFi4MCBV199dcwulvvuu6+4uNjqfPDBBwdHScM65pw5c/r373/VVVd5nM5+S8neOGYMztCc28SczvK9731vRZQ0nDvGny7h/HRn3lJcIABADtBzt1cTZ1cKrJKSktVRVuf1119vFUO9e/d2bhnTf/DBBx9++OH333+/tIcOHWrVEzG7OE/x2muvWe1BgwbJuf7xj39I0WNt/Oqrr65Zs2bAgAEep7MrHufGzjE4Q3NuE3M6y5IlS6qrq6U+sz9v7na6+Pnp5ryluEAAgByg526vJs5uFFhSl6xateqll16yHhYUFOzevTu+f8+ePQ888IBVNEiB9eyzz+7du9c6oL2L8xQxBZawCyznkNxOF/OhqPgxxIdmNWJOZ2lrawuFQvvtt5/9MX+P06VYYKU4bykuEAAgB+i526uJsysFVmNj48CBA+0fdc2ePVseXnbZZdbDM844w/pKxJh++bdPnz7Tpk2T9nPPPXfQQQf16tUrZhfb0qVLw+Gw/SPCQVH2jwidQ/I4XfzGzjHEh5bwdLbzouyHHqeLmZ9uzptobW3dd999vRcIAJADKLByTdIVlQS/YcOGnhkMYsydO/fss8/O9CgAAGlHgZVrkq7ozJkzp0+fHvODPKRbW1vbtddeW1JSsm7dukyPBQCQdhRYuSbpira2tk6YMCEPPat3795VVVVr167tmcsAAJBZeRRYOUbPigIAYCw96VhNnGpWFAAAY+lJx2riVLOiAAAYS086zuU4Yz7uk+nhAACgnZ50rCZONSsKAICx9KRjNXGqWVEAAIylJx2riVPNigIAYCw96VhNnGpWFAAAY+lJx2riVLOiAAAYS086VhOnmhUFAMBYetKxmjjVrCgAAMbSk47VxKlmRQEAMJaedKwmTjUrCgCAsfSkYzVxqllRAACMpScdq4lTzYoCAGAsPelYTZxqVhQAAGPpScdq4lSzogAAGEtPOlYTp5oVBQDAWHrSsZo41awoAADG0pOOTYnz/fffP+WUU0JR0pCHVn8kEqmtrZXOcDhcX18vD/0dX8+KAgBgLD3p2JQ4Kyoq5s2b1xZ11VVXyUOrv7Gxsby8fHOUNJqamvwdX8+KAgBgLD3p2JQ4+/fvv2vXLqv9+eefy0OrLZVWc3Oz1ZZGZWWlv+PrWVEAAIylJx2bEufZZ5+9cOHCzz77rK2tbf78+fLQ6i8qKmptbbXaLS0toVDI3/H1rCgAAMbSk45NifOjjz4aOXJkXpQ0tm3bZvXn5+d3dHRYbWkUFBR4HCTPU9pjAAAAnvSkY1PinDx58lVXXWV/BkseWv28gwUAQM7Qk45NibNfv358BgsAgNymJx2bEqcUUvPnz7fewbr66qvtQqqhocHttwi7tEh6VhQAAGPpScemxLlp06Yf/vCH+0WddNJJ7733ntUfiURqamqsv49VV1fn/DtYFFgAAGQXPelYTZxqVhQAAGPpScdq4lSzogAAGEtPOlYTp5oVBQDAWHrSsZo41awoAADG0pOO1cSpZkUBADCWnnSsJk41KwoAgLH0pGM1capZUQAAjKUnHauJU82KAgBgLD3pWE2calYUAABj6UnHauJUs6IAABhLTzpWE6eaFQUAwFh60rGaONWsKAAAxtKTjtXEqWZFAQAwlp50rCZONSsKAICx9KTjXI4z79syPRwAALTTk47VxKlmRQEAMJaedKwmTjUrCgCAsfSkYzVxqllRAACMpScdq4lTzYoCAGAsPelYTZxqVhQAAGPpScdq4lSzogAAGEtPOlYTp5oVBQDAWHrSsZo41awoAADG0pOO1cSpZkUBADCWnnSsJk41KwoAgLH0pGM1capZUQAAjKUnHauJU82KAgBgLD3pWE2calYUAABj6UnHauJUs6IAABhLTzpWE6eaFQUAwFh60rFBcb755ptTpkwZMGDA8OHDly5danVGIpHa2tpQKBQOh+vr6+Whv4PrWVEAAIylJx2bEufGjRtLS0sffPDBTz/9dMuWLdOmTbP6Gxsby8vLN0dJo6mpyd/x9awoAADG0pOOTYlTKqolS5bE91dUVDQ3N1ttaVRWVvo7vp4VBQDAWHrSsSlxDhkyZMGCBcOGDSsuLr7gggva2tqs/qKiotbWVqvd0tISCoX8HV/PigIAYCw96diUOAsKCqZPn74jqrq6eubMmVZ/fn5+R0eH1ZaGbOZxkDxPaY8BAAB40pOOTYmzqKiopaXFakuNVVJSYvfzDhYAALlBTzo2Jc6qqiqpq6z29u3b7QKLz2ABAJAz9KRjU+JcunTp+eefb/+I8KKLLrL6Gxoa3H6LsEuLpGdFAQAwlp50bFCcCxcuLCkpCYfDM2bMsD/kHolEampqQlF1dXXOv4NFgQUAQHbRk47VxKlmRQEAMJaedKwmTjUrCgCAsfSkYzVxqllRAACMpScdq4lTzYoCAGAsPelYTZxqVhQAAGPpScdq4lSzogAAGEtPOvYfZ3t7+/z588eMGVNYWCj/Lly4cM+ePQGOLFh6VhQAAGPpScf+47z88ssnTZq0bt06qbTk34kTJ15xxRUBjixYelYUAABj6UnH/uMcMmTI1q1b7YfSlp4ghpQWelYUAABj6UnHFFgAAKCH6EnH3foR4eTJk99+++329nb5V9r8iBAAAHjQk4679SH3efPmHXjggYWFhfLvggUL+JA7AADwoCcdq4lTzYoCAGAsPelYTZxqVhQAAGPpScf+41y3bl1lZWW/fv3yHAIcWbBMHhsAAEroScf+4zzmmGOuu+66L7/8MsDRBCvv2zI9HAAAtNOTjv3HWVhY+MUXXwQ4lLTSs6IAABhLTzr2H+fIkSM/+OCD4EaSXnpWFAAAY+lJx/7jvPvuu08//fSPP/44wNGkj54VBQDAWHrScdfizEsmTaPsPpPHBgCAEnrSsZo41awoAADG0pOO/cfZq1evAMeRbnpWFAAAY+lJx/7jPOCAA/773/8GOJS00rOiAAAYS0869h/nrbfeeuaZZ3744YeRSCTAAaWJnhUFAMBYetKx/zj5kDsAAOgSPelYTZxqVhQAAGPpScdq4lSzogAAGEtPOlYTp5oVBQDAWHrSsZo41awoAADG0pOO1cSpZkUBADCWnnRsVpytra2lpaXO2Y9EIrW1taFQKBwO19fX+/6TEHpWFAAAY+lJx2bFOWfOnEWLFjlnv7Gxsby8fHOUNJqamvwdWc+KAgBgLD3p2KA4169fP2bMmPb2dufsV1RUNDc3W21pVFZW+ju4nhUFAMBYetKxQXGefPLJDz30UOe3Z7+oqKi1tdVqt7S0hEIhfwfXs6IAABhLTzo2Jc4VK1YcffTR1kesnLOfn5/f0dFhtaVRUFDgcZCEf1ze/L8yDwCAEnrSsSlxjh8//uWXX7bavIMFAEBO0pOOTYnT7Q0nPoMFAEDO0JOOTYzTOfsNDQ1uv0XYpUXSs6IAABhLTzo2Mc6Yv4NVU1MTiqqrq3P+HSwKLAAAsouedKwmTjUrCgCAsfSkYzVxqllRAACMpScdq4lTzYoCAGAsPelYTZxqVhQAAGPpScdq4lSzogAAGEtPOlYTp5oVBQDAWHrSsZo41awoAADG0pOO1cSpZkUBADCWnnSsJk41KwoAgLH0pGM1capZUQAAjKUnHauJU82KAgBgLD3pWE2calYUAABj6UnHauJUs6IAABhLTzpWE6eaFQUAwFh60rGaONWsKAAAxtKTjnM5zrxvy/RwAADQTk86VhOnmhUFAMBYetKxmjjVrCgAAMbSk47VxKlmRQEAMJaedKwmTjUrCgCAsfSkYzVxqllRAACMpScdq4lTzYoCAGAsPelYTZxqVhQAAGPpScdq4lSzogAAGEtPOlYTp5oVBQDAWHrSsZo41awoAADG0pOO1cSpZkUBADCWnnSsJk41KwoAgLH0pGM1capZUQAAjKUnHauJU82KAgBgLD3p2JQ4X3jhhUmTJhUWFg4bNmzWrFmffPKJ1R+JRGpra0OhUDgcrq+vl4f+jq9nRQEAMJaedGxKnCeccEJzc/Pu3bt37Ngxe/bsqVOnWv2NjY3l5eWbo6TR1NTk7/h6VhQAAGPpSccmxrlr164BAwZY7YqKCim8rLY0Kisr/R1Tz4oCAGAsPenYxDiXL18+YcIEq11UVNTa2mq1W1paQqGQv2PqWVEAAIylJx0bF+eaNWtGjx69ceNG62F+fn5HR4fVlkZBQYHHvnme0j50AADgSU86NivOlStXlpWVvf7663YP72ABAJAz9KRjg+JctmzZ8OHD33jjDWcnn8ECACBn6EnHpsS5ePHisrKyDRs2xPQ3NDS4/RZhlxZJz4oCAGAsPenYlDjjPzK1e/fuzujfwaqpqQlF1dXVOf8OFgUWAADZRU86VhOnmhUFAMBYetKxmjjVrCgAAMbSk47VxKlmRQEAMJaedKwmTjUrCgCAsfSkYzVxqllRAACMpScdq4lTzYoCAGAsPelYTZxqVhQAAGPpScdq4lSzogAAGEtPOlYTp5oVBQDAWHrSsZo41awoAADG0pOO1cSpZkUBADCWnnSsJk41KwoAgLH0pGM1capZUQAAjKUnHauJU82KAgBgLD3pWE2calYUAABj6UnHuRxn3rdlejgAAGinJx2riVPNigIAYCw96VhNnGpWFAAAY+lJx2riVLOiAAAYS086VhOnmhUFAMBYetKxmjjVrCgAAMbSk47VxKlmRQEAMJaedKwmTjUrCgCAsfSkYzVxqllRAACMpScdq4lTzYoCAGAsPelYTZxqVhQAAGPpScdq4lSzogAAGEtPOlYTp5oVBQDAWHrSsZo41awoAADG0pOO1cSpZkUBADCWnnSsJk41KwoAgLH0pGPT44xEIrW1taFQKBwO19fXy0N/x9GzogAAGEtPOjY9zsbGxvLy8s1R0mhqavJ3HD0rCgCAsfSkY9PjrKioaG5uttrSqKys9HccPSsKAICx9KRj0+MsKipqbW212i0tLaFQyN9x9KwoAADG0pOOTY8zPz+/o6PDakujoKDAY+M8AABgth4pHzLP9DiDegerM1HVnEpPRjYzZBgpbmbIMFLcjGH42MyQYaS4GcPwsZkhw0hxM4bhYzNDhuHWmZNMjzOoz2B1ZtUlaMgwUtzMkGGkuBnD8LGZIcNIcTOG4WMzQ4aR4mYMw8dmhgzDrTMnmR5nQ0OD228RdnWRsugSNGQYKW5myDBS3Ixh+NjMkGGkuBnD8LGZIcNIcTOG4WMzQ4bh1pmTTI8zEonU1NSEourq6px/B4sCy5DNDBlGipsxDB+bGTKMFDdjGD42M2QYKW7GMHxsZsgw3DpzkpY4c4Cei9I3psgb85MUU+SN+UmKKUpKzxRpiTMH6LkofWOKvDE/STFF3pifpJiipPRMkZY4c4Cei9I3psgb85MUU+SN+UmKKUpKzxRpiTMH6LkofWOKvDE/STFF3pifpJiipPRMkZY4c4Cei9I3psgb85MUU+SN+UmKKUpKzxRpiRMAAKDHUGABAAAEjAILAAAgYBRYAAAAAaPAAgAACBgFFgAAQMAosAAAAAJGgZUxef/P2RmJRGpra0OhUDgcrq+vd365te3555//wQ9+0Ldv32HDhl144YXbt29Pfd/s4nuKLK2traWlpc7d874tjUPvEW6BJA3QbQ6VXEIe/Um34RKyKL8LefTHyPm7UKfLVLzwwguTJk0qLCyUK2TWrFmffPJJ/I45fyPKhdXNajEXZWNjY3l5+eYoaTQ1NcXvMnHixCeffLKtrW3Xrl3XXXedXMSp75uNfEyRZc6cOYsWLYq5taVxoBniFpRHsG5zqOQSStrvsQ2XkEX5XShpv03JXagzLq4TTjihubl59+7dO3bsmD179tSpU+N3yfkbUW6udBaJuSgrKirkorTa0qisrHTb0iKXb//+/ZPum9X8TdH69evHjBnT3t6e87e21G/9do/bHCq5hDz6k/ZwCcVvpvAu5NGv8y7U6RmXVOEDBgyI3zLnb0S5udJZJOaiLCoqam1ttdotLS2hUMhtS/HFF1/ceOON9isDj32zmr8pOvnkkx966KGYTmmXlJRIMhg3btwdd9yxd+/e9A69R/i49bvNoZJLyKM/lQKLS8hJ513Io1/nXajTs8Bavnz5hAkT4rfM+RsRBVaGxVyU+fn5HR0dVlsaBQUFHjuKwYMHv/vuu13dN7v4mKIVK1YcffTR1k/u45/2e/bsWb16tbwqmjt3bnqG3KN8/PDCbQ6VXEJJ+5NuwyVkb6DzLpS0v1PZXajTfSrWrFkzevTojRs3xv9Xzt+IKLAyLPW3Z+J9/vnn11xzzbHHHutj3yziY4rGjx//8ssvJ9zdtmXLltyYIh+3/px/4Rgj8ALLovkSsum8CyXt71R2F+p0iXHlypVlZWWvv/56wl1y/kZEgZVhqX/AKCG5u9k/286Zn1vH8DFFeXHit9m6deuQIUPSMeAe5uPWn/MffYiRpgJL8yXkpPAulLS/U9ldqDPRVCxbtmz48OFvvPGG2y45fyOiwMqwmIuyoaHB7bcn7C1nzJixfv36jo6O//znP5dddpn96QePfbOajyly2726unrdunVfffWVTODkyZMvv/zy9A27x/j4dIjbHCq5hDz6k/ZwCVkN5Xchj36dd6HOuMAXL15cVla2YcMGjy1z/kZEgZUxCV/cRCKRmpqaUFRdXZ3z73/Y2zz22GOHHXbYPvvsU1paOnv27J07dybdN0v5nqKYg9hta+r69u07ZsyYefPmtbe3pzuEtHJ7fezRbzXc5lDJJeTd770Nl5DVUH4X8u5PeBC7nWOXUKfLVOTF2b17t/1fViPnb0QUWAAAAAGjwAIAAAgYBRYAAEDAKLAAAAACRoGVGW5fhNnVL79sa2u74IILiouLS0pKrrnmGrfTeXx3ZvyHNFMfrXjzzTenTJkyYMCA4cOHL1261O98AACQUyiwMsPtizC7+uWXM2fOrK6u3h51zjnn3HfffQlPl/S7M70LLLfRbty4sbS09MEHH/z000+3bNkybdo03xMCAEAuocDKPOcXYXb1D6/tv//+UvRYbamxqqqqEp4i6d9t8y6w3EYrFdWSJUtS3BEAAD0osDLP+UWYXf3qACmw5KHVlkrL7SsFkn7zQOoFlnO0Q4YMWbBgwbBhw4qLiy+44IK2trYUDwIAQG6jwMqwmC/C7OqXX86YMeP888/fEXXeeef17t074VmSfndmigVWzGjlONOnT7fOXl1dPXPmzFQOAgBAzqPAyqT4L8Ls6jtYO3fulLoqHA4PGTLkhhtuGDp0qNUf89H1rr6DlfCT7wlH63z/rKSkxMckAACQeyiwMibhF2F258sv77rrLim2Ep6r+5/BSjjaqqoq5yfAKLAAALBQYGWG2xdhdvXLL88///ytW7e2tbU98sgjpaWl77zzTsLTJf3uTO8Cy220S5cutX9AWV1dfdFFF6UYPgAAuY0CKzPcvgizq19+KSXO8OHD+/fvf8IJJ6xZs8btdN5fkJzwK0tTGa1YuHBhSUlJOByeMWMGH3IHAMBCgQUAABAwCiwAAICAUWABAAAEjAILAAAgYBRYAAAAAaPAAgAACBgFFgAAQMAosAAAAAJGgQUAABAwCiwAAICAUWABAAAEjAILAAAgYBRYAAAAAfs/SLrbwqt9PmsAAAAASUVORK5CYII=)
| VMR Tools created by Darren De Zeeuw. |