Global Magnetosphere Real Event Analysis from Runs on Request     (VMR Tools)
Analysis of Run: Masha_Kuznetsova_121607_3b | |
Satellite Data Available |
Data-Model Comparison |
Model on Satellite Track |
Run information: |
|
|
|
View standard CCMC run page. | ?? |
Event Date | | March 23 2007 |
Start Time | | 2007/03/23 07:00 |
End Time | | 2007/03/23 14:00 |
Key Words | | THEMIS Substorm test; ~ 9 mln cells |
Model | | OpenGGCM |
Model Version | | 3.1 |
Validation Level | | 0 |
Coordinate System for Input | | GSM |
Coordinate System for Output | | GSE |
Dipole Tilt, in the X-Z Plane, at Start deg | | 1.40 |
Dipole Tilt, in Y-Z GSE plane, deg | | 12.40 |
Update Dipole Orientation with Time | | no |
Inflow Boundary R_E | | 24 |
F10.7 | | 72.00000 |
Conductance Model | | Sig-CTIM |
Corotation | | no |
Run Number | | Masha_Kuznetsova_121607_3b |
Minimum Dst Value | | -10 |
SW Source | | DSCOVR-realtime |
Diagnostic Indices | | NO |
|
View interactive javascript plot of satellite positions during this run in a new window.
Model values plot for GOES-12 for time period of this run.
Choose variable to plot:
![](data: image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAyAAAAEsCAIAAAC0T0BtAAAAEXRFWHRTb2Z0d2FyZQBBdXRvcGxvdGfxHnYAAAAqdEVYdENyZWF0aW9uIFRpbWUARnJpIEp1biAyMyAwMjo1MTo1MSBFRFQgMjAxN/S6VEgAAAG1dEVYdHBsb3RJbmZvAHsgInNpemUiOls4MDAsMzAwXSwKICAibnVtYmVyT2ZQbG90cyI6MSwKICAicGxvdHMiOiBbCiAgewogICAgInRpdGxlIjoiTWFzaGFfS3V6bmV0c292YV8xMjE2MDdfM2I6IE9wZW5HR0NNIHBsb3Qgb2YgcmhvIGFsb25nIEdPRVMtMTIgdHJhamVjdG9yeS4iLCAKICAgICJ4YXhpcyI6IHsgImxhYmVsIjoiIiwgIm1pbiI6IjIwMDctMDMtMjNUMDc6MDA6MDAuMDAwWiIsICJtYXgiOiIyMDA3LTAzLTIzVDE0OjAwOjAwLjAwMFoiLCAibGVmdCI6NzgsICJyaWdodCI6NzIyLCAidHlwZSI6ImxpbiIsICJ1bml0cyI6IlVUQyIgfSwKICAgICJ5YXhpcyI6IHsgImxhYmVsIjoicmhvIiwgIm1pbiI6MC42NzIyMTk5OTk1LCAibWF4IjoxNS45NjYxODAwMDA1LCAidG9wIjo1MiwgImJvdHRvbSI6MjQ4LCAidHlwZSI6ImxpbiIsICJ1bml0cyI6IiIgfQogIH0KIF19TYOXeAAAAARnQU1BAACvyDcFiukAADHzSURBVHic7d1/dBX1nfh/5GcgKQZEBBoggeBGGtzAIidIKIEGDBpsWjk21igRsCCNNbuNEDRi6FKxnsDmtDlKSzim54RK3WizW8Ro2ebsxpplQXGbLSlEjQpuhKhRYjeWVPJ5bebzme/93ntncnMzuXfufT0ff+TMnTs/3q95z53Xa+ZO5g7rBQAAgKOGhbsBAAAA0YYCCwAAwGEUWAAAAA6jwAIAAHAYBRYAAIDDKLAAAAAcRoEFAADgMAosAAAAh1FgAQAAOIwCCwAAwGEUWAAAAA6jwAIAAHAYBRYAAIDDKLAAAAAcRoEFAADgMAosAAAAh1FgAQAAOIwCCwAAwGEUWAAAAA6jwAIAAHAYBRYAAIDDKLAAAAAcRoEFAADgMAosAAAAh1FgAQAAOIwCCwAAwGEUWAAAAA6jwAIAAHAYBRYAAIDDKLAAAAAcRoGlzrBhdLo6dPpADcUWe/XVV+fMmdPvkodi1ewAQOjxqVOHQ61CdPpADcUWy8jIeP7558OyanYAB7ExESB2lAggn+e5c+devnzZHCPD1113XXCfc0eODp4L+f3vfz916tTy8vLBLzbwlYbFsP/Hc+SLL764YsWKmJgY2QgbNmz48MMP7acXb7zxxqpVq2JjY6dNm3bgwAFjpPTp1q1b4+PjJ0yYUFJSYnb3sP+/8ePH27TwhRde+OpXvzpmzBhpzLp16z744ANzIQMNtrm5efXq1XF9ZEB6eaBLCER7e/uWLVsSExNHjRolgWdnZ0sIAb7b0tLyzW9+c+LEiaNHj164cOE//uM/GuMd+bwMxXUm6bvPP/988KsOwlB/dux7ymZfGubDGP/JJ5/Ip2DOnDljx46VBX79618/evSo1doH+sH0nHGwkQcs7IcvhB5dHgHkkyn545//+Z/NMb/61a9kjBsKrFdfffWaa645ePDg4JcZ+ErDy6sZK1euPHLkSFdX1/nz5zdt2nTLLbfYT3/69Onp06fX1NR8/PHH77777h133GGM37dv34IFC97uIwP79+/3XfXevXuLi4tt2rZ8+fLnn3++s7Pz4sWLO3fulATjtw39am1tvfrqq/fs2dPeR9YrL2XkgBbSr3Pnzs2cOfP73//+qVOn/ud//kdS4K9//eubbropkHfPnDkjO56U9bINpWr593//99tuu814y5HPy1AUWAHOEnEFln1P2e9LVg2T2e+9917p5T//+c8XLlz45S9/uWzZMvtmDPSDabP2oeCSwxdCiS6PAPLJfPbZZ5csWWKOSU9Pl/N18xMrOVuyi5zKyynyN77xjY6ODmO8nPPNnz9fzuHk8GcmbJnrqaeekjEyXpYjJ5f2C7Fqkvx9+eWXp0yZ8pvf/MZrvO9LvyepVi354osv/v7v/17OhuXM9Z577vnss8+8lmATneTaBx544Jo+MiAvP/roo0mTJkk1Y7ZKxkyePFnGDChkqxg9SVkTGxtrP71UVJWVlb7zLl68WPKBMSwDnt1tkEyTlJQkySyQRgpJLePGjTPb8KMf/UiilmC/+93vyqLsw7nzzjsfffRRzzE7duzIz8+3X5rfjuu17uj169dv377dqv32737729/etWuX37f6/bx4Tew3FnNi3z2q19/e6Gmgs8gYKTsSEhKuuOKKXuvN5XexXqx2aftw7Fe6efNmWaBMLxvKb7z2PdXvvuR3rrFjx37yySdWy/QriA+m7xHJsyP63ZhWO3xPT88jjzwyY8aM+Ph449K+77psOsJsw9KlS5955hmzwXIuMXXq1IFuFoQRBVYEkI+cfJLnzJnzu9/9Tl42NDTIsIwxP6vXX3/9b3/7Wzl3lM9eYWHhxo0bjfHyaaytrZWPrnwyN2zYYC4tNze3ra1NDgc7d+4085DVQqyaJEuePn36a6+95jXe5qX42c9+lpOTY98SOdn92te+9vbbb0sNJAfiv/u7v/O7NL/RyXEtKyvrbJ/ly5fLoVxGSoZ4/PHHzRl3795dVFQ00JBtgjLV1dVlZmbaTy/HU2mkNF4O3HfffXdnZ6cxXg7i5hFcTtnl0Oy1HCki5SAeSAuFbFIJ0zxrlzbIZjnXRwbKysrsw5FGvvnmm55j5KUU0/ZLs+k4vx0tG0FymFUI9u9KC9966y2/b/X7efGa2G8s5sR+96he291goLPI+K9//evvv/+++dLv5rJarCerXTqQcPyutLS0dPXq1e/3WbVqld8Q+u0p+33J71yy0ttvv/2VV16RWKyW7GWgH0zfWbw6ot+NabXDS+kvq5MwZbxxqPFdl01HmG2or6+/7rrrZNc13pKjnOdxDO5HgRUBjE/mT3/601tvvbW37+K5lCm9FgeUTz/9VM5+jGEpgH784x+/9957Xktrb283hv/0pz/JmaL9QqyaNHLkyOeee85vU61e/uY3v5k/f76cTdq3JCUl5Y9//KMx/MEHH8hZtd+l+Y1u1qxZf/jDH4xhOQufPXt2b9/NOnI2KaeVvX0nl3LGKTXZQEO2Csr0+uuvJyUl+WYar+lHjBghx+LzffLy8goKCozxw4cPv3TpkjEsAzKZ51xykL322mtPnToVYAvF5MmTPb+IMTfLf/3XfxmbxYasvbu723OMpBnpcful2XSc346WBXqmT69T/H7f9Wqh55S9AX9erGIxJ/a7R1ktLbhZZPw777zj+dLv5rJarBXPXTqQcKxWKh8fY1hm9BuCfU/1uy95MRsvJchf//Vfx8TESBuKi4v7vXIz0A+m7yxeHeHJ78a02uGTk5PNS4BW67LpCM823HDDDcYNGGfOnJEGSNf4bR7ciQIrAhifzM8//1zOFH/xi1/IX/NLB2OC48ePr1ixYsKECcYRyszNr732mpyVXnXVVXIGb379ZFUDWS3EqkkHDhyYOHHiv/7rv/pdmu9LOZpIM7wSid+J5eDuecCVysPv9H6jk8OxeTSXAXlpDMsJ8aFDh2TgmWee+fa3vx1EyFbNNjQ0NEgNd+zYsX6nHz9+/IULF4xhqbEmTZpkjre5giWNX7NmTSDNM0g+ePTRR5cuXWq2we9msSLFmf1VB79LC7DjzJeyQJt61P5d+ytYvbafF6+J/cZiTmy1R9kUWAOdRcZ73pJvtbmsFuvJapceaDie05vfXsn0fkOw76l+9yXfBXqSLSOF77p16zwvx3qWYr5r9GTzwfSdxasj+t2YVju850a2WpdNR3i2oa6u7q/+6q/+8pe/3HHHHXI+6TcKuBYFVgQwP5m7d++WMz/zKrE5Xs5+fv7zn3/00UfyOZS/Xp9k+bgePnzY6ogW4EL8Numf/umf5Ogjf83xcpgwz7HkhNhciFQScph45ZVX/K7a66VM2dbW5rtS48YIL17RWZ0XvvTSS4sXL+7tux1HzmiDCNmq2b191c+0adNOnDgRyPQZGRmyNYxhOes1Cyz7e7DS0tK8tl6/pMYy7zsZ5nGdRgb6vfghR3Pf+2buvPNO+6VZdZxVR0vWLCkpsZrY/l2pkh977DG/je/38+I1sd9YzImt9ii/e6P9LDYFViAvA7mCZbVL97sQm5X2ewXLvqf63Zd8F+irs7PzS1/6kv00A/1g9vp0otcS+t2YVju8nPL5XsHyWleAHSHHt3nz5j344IOJiYmet04iIlBgRYB+j8tSXvzqV7+SE005p7/tttvM8Xl5efIZlo+llCByoPG7tH4XYr/qf/u3f7vqqquefvpp46WUBTt37vzss8/efvvtW2+91ZxMyprq6mr7uMyXFRUVWVlZp06dkpb//ve//9a3vmWMv/rqqz2/I/Mb3cMPP2ze2SBnn6Wlpeb0X/nKV37yk5/Iu+aYAYVs1ew9e/bIKbKZhPqd/sCBA5JdzK8IzduqnnrqKav/InzhhRduvPHGQNp21113ySa6dOnSe++9V1hY6HnSv2rVKuNOIxnwvH3Hb9R//OMfpfLbu3ev+Z9f8tK8SmG1NKuOs+rod955RzrO/O+zjz/++Ne//nWA7545c0a6TxomHS09eOzYMc//IvS7cawKLL+xmBNb7VFee6Mnq1kGWWDZ7Nsmq12634XYrNS8B+umm27yG4J9T/W7L/ndJsuWLfvlL38pZyCyM8snYtOmTdIMv1Nabbd+P5i9Pp3otYR+N6bVDv/DH/4wMzNT5vK8B8trXYHvJFImysiqqiqbYOFOdFIE6Pe4LAlYzqVGjRolB5Qf//jH5vhnnnlGxsfExMyfP/+3v/2t36X1u5B+m/Sf//mfcnh94oknevtOxaSWMv6z78knn/Q8JHmyb8kXX3whDUhJSRkzZoycvdXV1Rnj5YgZHx9vH113d/f9999v/G+ODHheqJeSZfjw4S+99JI5ZkAh20Thpaury2b63r4zeMkxEyZMkHrIvMldTlXlPDW+z7Zt2zy/JsjIyDA3gr1nn332+uuvHz169PTp0yUnyWm32RLjf+Vkpffdd5/nP6BZRS3dmp2dHdtHMusbb7zhOYvfpVl1nE0B8e67765fv172n5EjR0ql/o1vfOPVV18N8F1JVzJGNpfEe8MNN3g+B8tvRFYFlt9YzImt9iivvdGT1SyDLLBs9m2T1S7d70JsVvqd73xHNo5soh/84AeyZL8h2PeU/b7k92PyL//yL7IQWa98wJOSkr773e+aO7PfDTigD6bJqxO9NkK/G9Nqh5ei8KGHHkpISJD2S0Hpd12B7ySyY8+ZM8e4hdQzZKutAfegkwAMTDQd3KMplqEmdZLUOuFuRZj95S9/Me/QD401a9b84he/COUa4RQOLgAGJpqKkmiKZYgUFRW1t7e/8847X/va1/72b/823M0Js+PHj5v/LTjUvvjii5/+9Kfz5s0zn9SAyMLBBXZ8L7NHfUKKiJDD20gXbpCgRVMsQ6SioiIhIWHy5Mn33nsvjwmIi4t78sknQ7Mu2TkTExOlpAvN6uA4Di4AAAAOo8ACAABwGAUWAACAwyiwAAAAHEaBBQAA4DAKLAAAAIdpKbD8/ls7AAAIsXBXBCGiJk41PQoAgGvpScdq4lTTowAAuJaedKwmTjU9CgCAa+lJx2riVNOjAAC4lp50rCZONT0KAIBr6UnHauJU06MAALiWnnSsJk41PQoAgGvpScdq4lTTowAAuFBPT8+hQ4f0pGM1carpUQAAXKimpoYHjUYhPT0KAIALGZev9KRjNXGq6VEAAFyora2NAisK6elRAABcqLq6mgIrSuj8dUkAAFwoLy9PVTpWE6eaHgUAwIWmTJlCgRWF9PQoAABuc/LkSUnECQkJetKxmjjV9CgAAG5TXl4uibigoEBPOlYTp5oeBQDAbbKzsyURG4/CCndbQkRNnGp6FAAAV+nu7o6Li5NE3N7ericdq4lTTY8CAOAqDQ0NkoVTU1N7NaVjNXGq6VEAAFyltLRUsnBRUVGvpnSsJk41PQoAgKukp6dLFq6vr+/VlI5dFKfNE0E7OjqmT58+mF7R06MAALhHZ2fnyD5dXV29mtKx6+L0u+m3bNny2GOPUWABABBZ6urqJAVnZmYaL/WkY9fF6bvpT506NXv27O7ubgosAAAiy+bNmyUFl5WVGS/1pGPXxem76W+++eaDBw/6fWswiwUAAEMtJSVFUnBTU5PxUk86dl2cXpv+5ZdfXrRo0eXLl33f8juvjSFsNAAA8NHW1ib5Ny4urqenxxijJx27Lk6vTT9v3rzGxka/bw1msQAAYKhVV1dL/s3NzTXH6EnHrovTa9M7dSFKT48CAOASeXl5kn8rKyvNMXrSsevitNn0vrWXI4sFAABDYcqUKZJ/W1pazDF60rGL4uz3ShUFFgAAkeLkyZOSfBMSEjxH6knHauJU06MAALhBeXm5JN+CggLPkXrSsZo41fQoAABukJ2dLcm3pqbGc6SedKwmTjU9CgBA2PX09MTFxUnybW9v9xyvJx2riVNNjwIAEHYNDQ2SeVNTU73G60nHauJU06MAAIRdWVmZZN6ioiKv8XrSsZo41fQoAABhl56eLpm3vr7ea7yedKwmTjU9CgBAeHV1dY3sIwNeb+lJx2riVNOjAACEV11dnaTdzMxM37f0pONojpMfewYAIPQKCwsl7ZaVlfm+pScdq4lTTY8CABBeKSkpknabmpp839KTjtXEqaZHAQAIo7Nnz0rOjYuL6+np8X1XTzpWE6eaHgUAIIyqq6sl5+bm5vp9V086VhOnmh4FACCM8vPzJedWVlb6fVdPOlYTp5oeBQAgjKZMmSI5t6Wlxe+7etKxmjjV9CgAAOHS3NwsCTchIcFqAj3pWE2canoUAIBwqaiokIRbUFBgNYGedOyiOP0+sOrFF19csWJFTEzM1KlTN2zY8OGHHwa9cCfaCAAALGVnZ0vCrampsZpATzp2XZxem37lypVHjhzp6uo6f/78pk2bbrnlFkcWCwAAnNXT0xMXFycJt7293WoaPenYdXHabPqLFy/GxsY6vlgAADB4DQ0Nkm1TU1NtptGTjl0Xp82mr6ur8/vDRoNcLAAAGLyysjLJtkVFRTbT6EnHrovTatO//vrrSUlJp0+ftp/XxtC0FwAA/K/09HTJtvX19TbT6EnHrovT76ZvaGiYMWPGsWPHnF0sAABwRFdX18g+MmAzmZ507Lo4fTf9oUOHpk2bduLECWcXCwAAnFJXVyeptt87efSkY9fF6bXp9+zZM2PGDL8PhB1QJ+npUQAAQq+wsFBSbVlZmf1ketKxi+L0e8uU761U5rVHCiwAAFwiJSVFUm1TU5P9ZHrSsZo41fQoAAAhdvbsWcmzcXFxPT099lPqScdq4lTTowAAhFh1dbXk2dzc3H6n1JOO1cSppkcBAAix/Px8ybOVlZX9TqknHauJU02PAgAQYlOmTJE86/c/0rzoScdq4lTTowAAhFJzc7Mk2YSEhEAm1pOO1cSppkcBAAiliooKSbIFBQWBTKwnHauJU02PAgAQStnZ2ZJka2pqAplYTzpWE6eaHgUAIGR6enri4uIkyba3twcyvZ50HM1x8mPPAAAMqYaGBsmwqampAU6vJx2riVNNjwIAEDJlZWWSYYuKigKcXk86VhOnmh4FACBk0tPTJcPW19cHOL2edKwmTjU9CgBAaHR1dY3sY/5McL/0pGM1carpUQAAQuMf/uEfJL3Omzcv8Fn0pGM1carpUQAAQmPixImSXmNiYrq7uwOcRU86VhOnmh4FACAE6uvrjX/SX7RoUeBz6UnHauJU06MAAAy17u7u5ORkya3btm3r6ekJfEY96VhNnGp6FACAobZr1y7j8VcDqq56NaVjF8Xp94mgly9f3rp1a3x8/IQJE0pKSuRl0At3oo0AAGjX1tYWExMjibWxsXGg8+pJx66L02vT79u3b8GCBW/3kYH9+/c7slgAABCc3Nxcyar5+flBzKsnHbsuTq9Nv3jx4iNHjhjDMrBkyRJHFgsAAIJg3NseHx8f4I8PetGTjl0Xp9emHz9+fEdHhzF84cIF6VFHFgsAAAbKvLe9oqIiuCXoSceui9Nr0w8fPvzSpUvGsAyMGDHCfl4bQ9hoAAAUCPredpOedOy6OLmCBQCACw3m3naTnnTsuji5BwsAABcazL3tJj3p2HVxem36p556yuq/CAfUSXp6FAAAxw3y3naTnnTsojj93jJ1+fLlBx98ML7Ptm3bPJ+DRYEFAEAIDP7edpOedKwmTjU9CgCAswZ/b7tJTzpWE6eaHgUAwEGO3Ntu0pOO1cSppkcBAHCQI/e2m/SkYzVxqulRAACc4tS97SY96VhNnGp6FAAARzh4b7tJTzpWE6eaHgUAwBEO3ttu0pOO1cSppkcBABg8Z+9tN+lJx2riVNOjAAAMnrP3tpv0pGPn4+zu7i4tLZ09e7ZUvvJ3x44dn3/+ueNrCQQ/9gwAQBAcv7fdpCcdOx/n/fffv2LFiubmZqm05O/y5csfeOABx9cyUHp6FACAwRiKe9tNetKx83Fec801Z8+eNV/KsIxxfC0DpadHAQAYjKG4t92kJx1TYAEAgP/rpZdeGjVqlOP3tpv0pOMh+YowKyvrD3/4Q3d3t/yVYb4iBADA/To7O4cPHy4ZMyUlZYhWoScdD8lN7g8//PCsWbNiYmLk7yOPPBKum9w96elRAACC8/Of/9z4t7B77713iFahJx2riVNNjwIAEITOzs6EhARJl+vWrevq6hqitehJx2riVNOjAAAEobCwUHJlenr6kK5FTzp2Ps7m5uYlS5aMHTvWVc+gckMbAABwp6amppF9JIkP6Yr0pGPn45Tid+fOnX/6058cWdpbb72Vk5MT30cG5GVwy9HTowAADEhPT09aWpokypKSkqFel5507HycMTExn332mVNLW7x48cMPP9zZZ/v27fIyuOXo6VEAAAakvLxcsmRiYmJ3d/dQr0tPOnY+zpkzZ7a1tTm1tHHjxl28eNEY/vTTT+VlcMvR06MAAAROUnZcXJxkyfr6+hCsTk86dj7OJ598Mjc316lfL1q7du2OHTs++eSTzs7O0tJSeRnccvT0KAAAgcvJyZEUmZeXF5rV6UnHzsQ5rD9BL/ncuXMzZ840FiID77//ftDNCLoNAABEpdra2iH6UWcretKx2+PMysravn27eQ+WvAxuOXp6FACAQJgPvtq3b1/IVqonHTsf5xVXXOHg0saOHcs9WAAAOC40D77yoicdOx/nl7/85f/+7/92ammLFy8uLS01rmA99NBDS5YsMd8aUCfp6VEAAPoVsgdfedGTjp2Pc+/evd/85jffeeedy5cvD35pZ86cyc7OvrLP6tWr33zzTfMtCiwAAIIQygdfedGTjp2P0503mLuhDQAAuEEoH3zlRU86VhOnmh4FAMBGiB985UVPOlYTp5oeBQDARogffOVFTzpWE6eaHgUAwEroH3zlRU86VhOnmh4FAMCvsDz4youedKwmTjU9CgCAX2F58JUXPelYTZxqehQAAF/hevCVFz3pOJrjdNujIgAACIswPvjKi550rCZONT0KAICnjo6OH/7wh+F68JUXPelYTZxqehQAAFNjY+OYMWOuuOKKcD34youedKwmTjU9CgCAobu7Ozs727hPZunSpeFuzv/Sk47VxKmmRwEAENXV1cZDGURKSkpnZ2e4W/S/9KRjNXGq6VEAgHINDQ0LFy40SisZaGxsDHeL/j960rGaONX0KABArdbW1rVr1xqlVUJCQk1NTbhb5E1POlYTp5oeBQAo1NnZWVxcPHLkSMl3cXFxu3btCvs/DPqlJx2riVNNjwIAVOnp6amsrIyPj5dMJwXWxo0bw/U7g4HQk44jIM433nhj1apVsbGx06ZNO3DgQHAL0dOjAAA9Dh8+nJycbHwnmJWVdfLkyXC3qB960rHb4zx9+vT06dNramo+/vjjd99994477ghuOXp6FAAQ3Xp6ehobG48dO5aZmWn+k6BUWuFuV0D0pGO3xykVVWVl5eCXo6dHAQDRLT8/X5Ka8ezQSZMmSZaUkivcjQqUnnTs9jivueaaRx55ZOrUqRMnTrz77ruDfoyHnh4FAESx2traUaNGGQVWUVGRS55uFTg96djtcY4YMUJK9fN98vLyCgoKbCYeZitkbQYAwHEdHR3mIxhmz579zDPPhLtFwdCTjt0e5/jx4y9cuGAMS401adKk4Jajp0cBANGntrZWMqDksvj4+Orq6nA3J3h60rHb48zIyJC6yhj+4IMPKLAAAKp4XrjKyck5e/ZsuFs0KHrSsdvjPHDgwJ133ml+RXjPPfeYbw2ok/T0KAAgakTNhSuTnnQcAXHu2LFDdq8JEybcddddnnfzUWABAKJVlF24MulJx2riVNOjAIBIF30Xrkx60rGaONX0KAAgckXrhSuTnnSsJk41PQoAcIPGxsbAf7imq6tLJo7iC1cmPelYTZxqehQAEHZSKhlXob7zne+U9ae0tDQuLs58amNUXrgy6UnHauJU06MAgLDbunWr/bOv/Ro9enS0Xrgy6UnHauJU06MAoFNHR8fx48dLS0sfeeSRMF4B6unpKSsrGzlypOSduXPn9nv5ynD77bdnZGT8x3/8R7iaHTJ60rGaONX0KABEN6OQqq2tLS8vLywszMnJSU1N9fyKTYwYMULGHz58OMS/gtze3p6VlSUNkAJLyqYI+g3mkNGTjtXEqaZHASCanDt37u67716/fr3fQspTfHz8jBkzzALLGEhISJBCJzQXtI4ePTplyhRZqfyV4RCsMRLpScfRHKfXZy/czQEADIyUKTExMb6FVFpaWm5ublFRUUVFRV1d3cmTJ43HUPf09FRXV9fW1ra3tz/++OOJiYnGLCNHjhzSC1qeXwtmZWXJ2odiLdFBTzpWE6eaHgWAKCAlS0lJiVGyiPHjxz/33HNmIRW4+vr6tWvXmssZigtafC04IHrSsZo41fQoAES6tra2jIwMo2SRMuuJJ54I/IFSfg3dBS2+FhwoPelYTZxqehQAIlpdXV18fLxxtamxsdHZhXtd0Bo3bpysa//+/UEsiq8Fg6MnHauJU02PAkCE6u7u3rx5s1H65ObmDvTbwMAZF7SkgDPv65o0aVJeXl5VVVVbW1uAS+BrweDoScdq4lTTowAQiZqbm9PS0uRYHRMTU1lZGZqVLlu2LDY21viOz5ScnCx1Xm1trVWFx9eCg6EnHauJU02PAkDEqaqqMp6/kJKSMsjbrYLT0tKyb9++3Nxc49tJU3p6eklJSUNDQ3d3dy9fCzpBTzpWE6eaHgWACNLV1ZWXl2dUMwUFBfIyvO2REqqpqWnXrl2ZmZmeT4iQ4fnz5xtj+FpwMPSkYzVxqulRAIgUx48fN/6zLy4u7tChQ+Fujjep9urr64uLi43vLk1HjhwJd9MimJ50HBlxdnR0TJ8+fTC9oqdHAcDluru7W1paysvLje/aFi5c2NraGu5G9aO9vX3Tpk1jx4699957w92WyKYnHUdGnFu2bHnssccosAAgonV2dp44cWLy5Mnm1aCioiK+a1NFTzqOgDhPnTo1e/ZsOeOhwAIAd2ptbfW647utre3o0aNVVVUlJSV5eXkLFy6cNGmS5xdtY8aMqa+vD1eDES560nEExHnzzTcfPHiwd3C9EpU9KkWnHMKam5sbGhrq6up27969evXqXbt2BfFrEgAQnI6OjieffFKOscOHD5dCKjs7Ozk52XySp5eYmJjU1NS0tLR58+Y1NTWFu+0Ig6hMx365Pc6XX3550aJFly9f7g2gV/x+nk0haa/DbrrppiuvvDI/P3/z5s0FBQVZWVmZmZmJiYmez8ezYvN7qIaWlpbQ/MI8gCgghdTx48dra2vLy8sLCwtzcnKkVDKereDXlClTMjIy5PBVVlZWU1PT2NjIQw3QS4HlHnKWY/5Ugp4rWFIJlZaWzpw5076EknNEKbZSUlKk6pKD3bXXXisjv/SlL9kf9YzCa8mSJcP6zjjlwBf2/4sG4Davvfba3XffvX79+n4LKTmkXH/99XIgWrp06d69ew8fPtzc3Gw8NQrwFVnpeDDcHqfvhzno5TjbsKFg1FXJyclmsGPGjJGCqaCgoLKysrq6ur6+vqGhobW11erHHKQYNY9rAzrdlLfkRLOiokKWQL0FqCUHkEOHDsk5m9W5mc1FcSAQEZGOHRFJcXr1yoA6yc096ltXTZo0aePGjUePHh2Kf64xCq+amprs7Gw54/ybv/kbz4fpWdVb0hKZ0fHGAHCJlpaW4uJi8z704cOHy9/x48c/99xzFFJwkJvTsbMiKc7oKLDMminEdZV9k6QxVVVVhYWFCxcu9K23vvKVr8jJqxxw77vvvubmZi5xAVHD95KVnF9VVlaePn1aTrGk6gp3AxFt3JOOh5qaON3Ro1KdXHXVVRMnTkxKSgp7XWWl33prWN/tq+np6fn5+VIjVldXNzY2et0v39ra6pJwAPjldclKPukFBQX8Zx+GmkvScQioiTOsPSqlhtRPRUVFV155pWvrKitGvXXnnXcmJydnZGSkpKTY/AO2vJuTkzN//nx5ecMNN4S77QC8WV2y4ktAhAYFVrQJS492dXXV1dXl5+d7Pl5PqpCkpKQjR464vK6yd/bs2YaGhqqqqtLS0ry8vPT0dK9HCBpWrFhRU1PD/xMBYScHnB/96Edy2jNx4kQuWSGMKLCiTSh7tKOjQyqP3Nxczy/XkpOTpRYxHzkRlaSgPHnypNSUDzzwQGJi4ujRo43Y4+LiNm7cGN2xA+7U0tJSWVkph6PY2FguWcENKLCiTQh6tLW1taKiIiMjw/MbNHm5a9cu9/+O6VCQw/e+ffvS09M9q0zZGjzdFBhS7e3tNTU1BQUFXk8kNg5NmzZtCncDoRoFVrQZoh6VGuLpp5++8cYb58yZ4/klYFZWVlVVFZWEQc6hS0pKPI/1sn346hBwUFdXV319fVFRUWpqqmdRNWXKlLy8vOrq6ra2NjlenTx5MtwthXYUWNHGqR6VI9TRo0fLy8vXrl3r+YQF44uw/Px8HoxupaenRxKAHOvNb07Nrw6bmpqam5vD3UAgwshn6ic/+cntt9+emZnpeeFcPlnZ2dlymKKcggtRYEWboHvUpqIyDmRygigDiYmJXI8JkO9Xh4bnn38+3E0DIklhYaHn13/ymSotLW1oaOBYBDejwIoGXvk7wLnkpHDbtm1paWmrVq3yW1FlZGQUFRXV1NQYF11keo5owTG+OpwwYYK5eWWzq71lDQicnKUUFBSYHxw5A+SOdUQKCqxo02+P+v1fG78VFZwlten3vve9pUuXev5OIpUWYEXO6Iw7GuUjc//99x8/fjzcLQIGgAIr2vjtUav/tTGeL7B+/XoqqlCSSst4bBiVFuCXfEbMrwXT09P5HRtEIgqsaCM92tbW1hvY/9r09PRI7RXuJutFpQX4ampqSklJMW63ks9CRD+pGJpRYEUbI0nfcMMN/K9NBPFbaV1zzTVJSUkHDx4Md+uAEJFaqqyszDh2yZkhxytENAqsaGOmZ/7XJhKZlda4cePMrpw0aVJeXl5VVZVxbRKISi0tLWlpacaxq7i4mKMWIh0FVrSRHl23bp0kaf7XJqJJdrnuuutGjBhx9dVXe37Dm5ycvHnz5traWvoX0aS8vNx4blxiYqKcE4a7OYADKLCijZ4e1cA4iZcz+3379uXm5sbHx3sWW+np6SUlJVyhRERra2vLzMw0dumNGzfy+GJEDT3p2O1xvvjiiytWrJBzuKlTp27YsOHDDz8Mbjl6elShnp6epqamXbt2SULy/IFtGV60aFFycvL3vve9kydPcnELEaG1tfXAgQPGfYdTpkw5fPhwuFsEOElPOnZ7nCtXrjxy5IicvZ0/f37Tpk233HJLcMvR06PKGf8lWlxcbNy24iU+Pl7G5+bmFhUVVVRU1NXVUXjBVdavX2/urmvXru3o6Ah3iwCH6UnHkRTnxYsXY2Njg5tXT4/C1N7e/q1vfcu4DJCamur5r4hWhddtt932/e9/Xwqv5uZmvpRByHR3dx86dMj8TvCKK654+umnw90oYEjoSceRFKekPTkABTevnh6FF88LVB0dHcePH6+trS0vLy8sLMzJybEvvKQyS09Pz8/PLy0tra6ubmxsPHv2bBhjQfRpaWkpLi6eNGmSscuNHj06OTn5wIED4W4XMFT0pOOIifP1119PSko6ffq0zTRWadIQsqYi4hiFl/mM7EWLFqWkpHg+Ms1TTEyMvCvF2U033bRs2bKf/exnXO7CQHldshrW94CryspKvrBG1NOTjiMjzoaGhhkzZhw7dizoJejpUQStp6enurq6trbWHHP27FnZ96qqqkpLS/Py8tLT080rDQO93CULlzH8YyO8LllJvV5QUNDU1BTudgEhoicdR0Cccp43bdq0EydODGYhenoUQ62rq+vkyZPPPvvslVdeKftVSp9+L3fNnTtXXiYkJNTV1UnRJktoa2uzuVwhGdclP4V5/PhxfvNu8LhkBRj0pGO3x7lnz54ZM2b4Pb4PqJP09ChCRlKmZw00oMtdnuLj4xMTE9PS0iT75ubmFhQUrFmzxnjrBz/4weHDh2Wx8hEwfiXTb0va29uPHj0aeMvtn33f0dEhE0hdJevdvn270ZJdu3YF0hL09u0Ysolk35DNJfX0smXLJk6caJTjXLIC9KRjt8fpm43Mm10osOB+xuUuybJbt26dP3/+6tWrc3JypJBKTU2Vosrm/nobMmNycrIsJDs7W1L1fffdZzz9KyMjoywAMplMPGvWrMLCQpl9MO3xaoks8MYbb5SRDz30UBRXYxLRggUL5s6dK2Fu3rxZAs/KypKNIIEnJCTYbC4uWQG9mtKxmjjV9CgijucVo9ra2urq6ieeeOLmm29euXKlJG+pXSR5Sx0j+TuIaiwInlfU1qxZs2jRoiVLlgy+Jb7V2K233jp27NjbbrvN/TWH8TDbxx9/XBo/ZswY+0hHjhwpwaakpEiwUr8mJSXFxsaWl5eHOwjAFYapScdq4lTTo4hukumlGmtpaZFq7PDhw1KNVVRU5OfnSy7funVrIFew1q9fP3fu3Ntvv11mlNkDvCcswJbMmjVr1KhRy5cvH2g1lpCQkJubW1paKu1pbW0dug0YOM+iyuva3ujRo6+66irZ4JWVlRJ4fX29bARpNr87DvRLTzpWE6eaHgXCy+8Xgn6rMSnypEz58pe/7PvVZHx8fEZGRlFRUVVVlRR/xn9f2t9u73Xn0+rVq5OSkgL8stL8H0+boiotLU3aY/xgfJR96QmEkp50rCZONT0KRCIpjGpra4uLi3Nycnz/OWDkyJGzZs0yhrds2TKgO598+X5ZuWDBAhkf18eqqAr3FgKihJ50rCZONT0KRIGOjo7Dhw+Xl5evXbs2NTU1kLLJ686n6dOnjx49OogvKymqgCGlJx2riVNNjwLRp6ur63e/+50UW7feemtZWdlg7nzy+2Wl8f+Pu3fvpqgChpqedKwmTjU9CgCAa+lJx2riVNOjAAC4lp50HM1xet1aEe7mAACgnZ50rCZONT0KAIBr6UnHauJU06MAALiWnnSsJk41PQoAgGvpScdq4lTTowAAuJaedKwmTgAA4ALhrghCREucvZqq5sCxTXyxTXyxTXyxTXyxTXyxTXzp2SZa4uzV1KmBY5v4Ypv4Ypv4Ypv4Ypv4Ypv40rNNtMTZq6lTA8c28cU28cU28cU28cU28cU28aVnm2iJs1dTpwaObeKLbeKLbeKLbeKLbeKLbeJLzzbREif80rOjYzDYTxAI9hMEQs9+oiVO+KVnR8dgsJ8gEOwnCISe/URLnPBLz46OwWA/QSDYTxAIPfuJljjhl54dHYPBfoJAsJ8gEHr2Ey1xwi89OzoGg/0EgWA/QSD07Cda4gQAAAgZCiwAAACHUWABAAA4jAILAADAYRRYAAAADqPAAgAAcBgFFgAAgMMosKLH5cuXt27dGh8fP2HChJKSEnlpjH/rrbdycnLi+8iAvAx8XqvxiGjD/h/PkYH0NfuJKn73kxdffHHFihUxMTFTp07dsGHDhx9+6Dsj+4kqfvcTQ0dHx/Tp060efBX1+wkFVvTYt2/fggUL3u4jA/v37zfGL168+OGHH+7ss337dnkZ+LxW4xEFvI56gfQ1+4lCXvvJypUrjxw50tXVdf78+U2bNt1yyy2+s7CfKOS3itqyZctjjz1mVWBF/X5CgRU9pHKSA58xLANLliwxhseNG3fx4kVj+NNPP5WX5izmfm81r9V4RAGvo55NX7OfaGbz3G05sMTGxvpOyX6ikO9+curUqdmzZ3d3d3u9pWc/ocCKHuPHj+/o6DCGL1y4EB8fbwyvXbt2x44dn3zySWdnZ2lpqbw0ZzF3dKt5rcYjCngd9Wz6mv1EM5sCq66uLjMz03dK9hOFfPeTm2+++eDBg75v6dlPKLCix/Dhwy9dumQMy8CIESOM4XPnzs2cOdP4jlwG3n///cDntRqPKOB11Aukr9lPFLIqsF5//fWkpKTTp0/7vsV+opDXfvLyyy8vWrTIuH3KaheK+v2EAit6WFX9WVlZ27dvN+/BkpeBzxs1ZxLwFfgVrH6nYT+JYn6zY0NDw4wZM44dO+Z3FvYThbz2k3nz5jU2Nvp9yxT1+wkFVvSw+t567NixVvdg9Ttv1HwXDl+B34PV7zTsJ1HMNzseOnRo2rRpJ06csJqF/UQh3+8BvfjOEvX7CQVW9Hjqqaes/ouwtLTUuIL10EMP+b152Wpeq/GIAl6HPJu+Zj/RzGs/2bNnz4wZM1paWmymZD9RyOZePat7sKJ+P6HAih6XL19+8MEHjeddbdu2zXx2yJkzZ7Kzs6/ss3r16jfffNOcxdzRrea1Go+I5vfM0qav2U908ruf+F6Z6OrqMt8yBthPVOn3SpVVgRX1+wkFFgAAgMMosAAAABxGgQUAAOAwCiwAAACHUWBFD6sfYR3oD2p63bE4fvx4v6uzmv2FF1746le/OmbMGGnGunXrPvjggwG1NsDZAQBwMwqs6GH1I6yD+UHNvXv3FhcX+12d1ezLly9//vnnOzs7L168uHPnTqmiBtTaAGcHAMDNKLCik+ePsAb9MLc///nPSUlJ586d87uKQJ4FJ/WT3+ea2rQ2iNkBAHAbCqzo5PkjrEH/HMH+/fvvueceq1X0O/tnn322e/du89JUgK0NYnYAANyGAisKef0Ia3A/qPnFF19ce+21p06dslqL/ezG/VuTJ09ubW0dUGsHOjsAAC5EgRVtfH+ENbgrWIcOHVqzZo3nGK8H9fZ7BevTTz999NFHly5d6nd2q9ZazQ4AQAShwIoqfn+ENbh7sNLS0l555RWbdQVyD5YUSX5vrrJpbeCzAwDgWhRY0cPqR1iD+EHNF1544cYbb7RfndXsd91116lTpy5duvTee+8VFhZa3URl1doAZwcAwM0osKKH1Y+wBvGDmhkZGXV1dfars5r92Wefvf7660ePHj19+vRNmzZ99NFHA2ptgLMDAOBmFFgAAAAOo8ACAABwGAUWAACAwyiwAAAAHEaBBQAA4DAKLAAAAIdRYAEAADiMAgsAAMBhFFgAAAAOo8ACAABwGAUWAACAwyiwAAAAHEaBBQAA4LD/A3+czUKOk9UwAAAAAElFTkSuQmCC)
| VMR Tools created by Darren De Zeeuw. |