Global Magnetosphere Real Event Analysis from Runs on Request     (VMR Tools)
Analysis of Run: orbit345-02-20020922_150200_20020922_194700-constBx0 | |
Satellite Data Available |
Data-Model Comparison |
Model on Satellite Track |
Run information: |
|
|
|
View standard CCMC run page. | ?? |
Event Date | | 2002/09/22 |
Start Time | | 2002/09/22 15:02 |
End Time | | 2002/09/22 19:45 |
Key Words | | Facsko et al 2016: 1-year run of GUMICS |
Model | | GUMICS |
Model Version | | 4-HC |
Validation Level | | 1 |
Coordinate System for Input | | GSM |
Coordinate System for Output | | GSE |
Dipole Tilt, in the X-Z Plane, at Start deg | | -10.87 |
Dipole Tilt, in Y-Z GSE plane, deg | | 27.75 |
Update Dipole Orientation with Time | | no |
Inflow Boundary R_E | | 32 |
F10.7 | | 161.10000 |
Conductance Model | | auroral |
Corotation | | |
Run Number | | orbit345-02-20020922_150200_20020922_194700-constBx0 |
Minimum Dst Value | | -30 |
SW Source | | DSCOVR-realtime |
Diagnostic Indices | | NO |
|
View interactive javascript plot of satellite positions during this run in a new window.
Model values plot for Cluster-1 for time period of this run.
Choose variable to plot:
![](data: image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAyAAAAEsCAIAAAC0T0BtAAAAEXRFWHRTb2Z0d2FyZQBBdXRvcGxvdGfxHnYAAAAqdEVYdENyZWF0aW9uIFRpbWUATW9uIEphbiAxNCAwMzozMjo0OSBFU1QgMjAxOShyir4AAAHOdEVYdHBsb3RJbmZvAHsgInNpemUiOls4MDAsMzAwXSwKICAibnVtYmVyT2ZQbG90cyI6MSwKICAicGxvdHMiOiBbCiAgewogICAgInRpdGxlIjoib3JiaXQzNDUtMDMtMjAwMjA5MjJfMTk0ODAwXzIwMDIwOTIzXzAwMzMwMC1jb25zdEJ4MDogR1VNSUNTIHBsb3Qgb2YgcmhvIGFsb25nIENsdXN0ZXItMSB0cmFqZWN0b3J5LiIsIAogICAgInhheGlzIjogeyAibGFiZWwiOiIiLCAibWluIjoiMjAwMi0wOS0yMlQxOTo0ODowMC4wMDBaIiwgIm1heCI6IjIwMDItMDktMjNUMDA6MzE6MDAuMDAwWiIsICJsZWZ0Ijo3OCwgInJpZ2h0Ijo3MDksICJ0eXBlIjoibGluIiwgInVuaXRzIjoiVVRDIiB9LAogICAgInlheGlzIjogeyAibGFiZWwiOiJyaG8iLCAibWluIjowLjAzNTQ2MDI0OTUsICJtYXgiOjAuMjAwMTI0NzUwNSwgInRvcCI6NTIsICJib3R0b20iOjIzNSwgInR5cGUiOiJsaW4iLCAidW5pdHMiOiIiIH0KICB9CiBdfYCIpwgAAAAEZ0FNQQAAr8g3BYrpAAAlwElEQVR4nO3df3AU9f34cUxQA7TpHqRiIgkgZaodsWNGHTNBRQQEtf6qY1EEQWpp/THaH0kOCVDaCm2nONZRE5vGjjP+QO0oozV0HCvt2FoZKWNrBUFAECghhwaIGntq+Lx6+539ru/9cXuXfW8ut8/HH8z7lt19775eu/t632XvdshRAAAAhGrIQG8AAABAsWGABQAAEDIGWAAAACFjgAUAABAyBlgAAAAhY4AFAAAQMgZYAAAAIWOABQAAEDIGWAAAACFjgAUAABAyBlgAAAAhY4AFAAAQMgZYAAAAIWOABQAAEDIGWAAAACFjgAUAABAyBlgAAAAhY4AFAAAQMgZYAAAAIWOABQAAEDIGWAAAACFjgAUAABAyBlgAAAAhY4AFAAAQMgZYAAAAIWOABQAAEDIGWAAAACFjgAUAABAyBlgAAAAhY4AFAAAQskE/wBoyZNDvAgBET8fF85VXXpk4cWLWNevoeqBqATUIXgb9keF1cHPQA4APHRfJyZMnP/300wPSNQOsEBXlTkVv0Acx17dKzz///HnnnXf88cdXVlbecMMNnZ2d9v9NpVLV1dX2RYZ8nlcvfX19jY2NhmEkEolkMikvg3RnWbdu3dSpU8vKymS2hQsXHjx40H+1XtNzXU93d/e8efNGjhxZUVGxfPnyrNvjNd2La9y8OjU5U7Bjx45LL73UyJCGvMwvOIM68gEPpPw23mvlXtNDibwOypFmHX7HHHPM6NGjZ8+evWfPHp/F89j+/fv333zzzePGjTv22GNlqZkzZ0rQXDdGmSiNr33ta/YupH3qqafaZ7D+a8uWLVdddZUcLccdd9yZZ5751FNPmdMPHTok2zlx4sRhw4ZJ75dffvmLL76YdZudG5P3DE7l5eUff/xx/7vOg+4xgVcW8us3rK3NWpuiHCoxLFMM+nDkeo244IIL5A2WlLcjR46sWLFCipn9f+VauXLlSmWAFWQzWltba2trd2ZIo62tLUh3lunTp3d0dPT09Bw4cGDRokWXXHKJ/2q9pue6nvnz50vV6cy45pprHnroIf/1eE33p8TQq1OTMwV1dXVLlizpzli8eLG8zC84gzryAQ+k/Dbea+Ve00OJvA7OAZbZ+Oyzz/bt2/fDH/5w8uTJPovnuv179+4dO3asrHbz5s0fffSRjIafe+65iy66yHVjlInSkCL97LPPWv/1zDPPyBTnAGvbtm0yOvzVr361e/duGbu8+uqr3/zmN83/kr5uuukmmeG///1vV1fXE088cf755/tvs+vG5D1D3osMugGWTxYGdoCVdW0MsAZQ4YZDDuLbb799dIY0rHdFksK77757zJgx8q7UfPmLX/zihBNOkDcWt9xyi1xorNmOfv7zJ2cXUsaGDx9uvZSr5IQJE3p7e/MYYEnVl7potqVRX1+ftTsvUsxGjBjhv9og3QVZz6hRo6SQm22p9K7lx76eINOdlBj6dOqaAgma9GW2Dx8+bMWwP8FxNVgin/VA6s/Ge63cPr2fkf/kk0+WLl1aU1NjGIZULHOiz/ne0tIi45iysrJzzjnnjTfeMKe/+OKLZ5xxhkyU/zJHQs6TXTnwDh06NGzYMGl897vftQ/r29vbZYr/9rteB2688UYZ8bvuo9ci9m178skn7V3I3j311FPOjb/uuut+9rOfuXYhuyM75bUB9k59LpJHPYLvf/HMdRHndds1rV6Hgd3WrVtlcCP7Ul5efuWVV6ZSqSC749+pHACyQplfAuW6vz5Z8DrerJdBjlV5D/DTn/503LhxiURiwYIFH3zwgWvcvHjVKdeTwr7CrMH02jDnWezsK0gRP/fccx9//HFrg2X8WllZGeSoHhQKd4AlyZs2bdqeDHknvWzZMnO65Obyyy+X96PWS5ltb4Y0fvzjH1vTlYZCDpRVq1bZP4O5+OKLH330UWURaVdUVEhpOe200379619/+umnrmuTo9M6NOWtpBxzWbvzsnbt2ilTpvivNmt3AdcjZV5emm2p91nXE2S6k3OA5dWpawquvvpqyb6cct3d3c3NzfLSf6eCBMfVoIh8kAMp7433WrkyvZ+Rl0Il+7V9+/b333//jjvuMCf6nO9XXHHFO++8I9uwYsUKa0QiV+Hf//73csmWK/LChQutme0d2YvE/v37m5qazA94ZIRx3nnnPfHEE9Jes2aNtNPptP/2u15GZBukPrnuo9ci9uuSbNXEiRP/9re/ycv169dLW6Y4L1xSnKw/iytmzZp1zTXX/PWvf/3oo4+8NuNogIukT/C91pnrIs7rtmtavVZrd/rpp7/00kuyy3JNuPXWW7/97W8H3x3XTuWqIpHclzFjxgzXXfDJQtYBVpBjdfXq1RdeeOHOnTvlpLj++ut/8IMfuMbNi0+mnFtlX2HWYHptmOtZrPQVpIj/8Y9/PPXUU+XIN/9L4vPzn//cf2cHkcIdYJ188slvvvmm2Za3GhMmTDDbkptdu3ZZs8lLa7Z///vf9tmUhp05ypa3dG+//bY55YUXXjj77LPNWyKci8i58dprr8kJaR1JipKSEvMaLaRRWlrq352XTZs2jR8/3rpqe63Wv7vg65k7d+6cOXMOZMhbtKFDh/qvJ+t0V0o8vTr1SoH5hxgzhtKwLg15B8fVoIh8wAMpv433Wrlzej8j/5WvfMX68MDic77L2Mhsf/jhh+ZHUKK6uvree+999913lU11brlF3oLLJcL8r87OTglvMpmUf617y3I9ciRr9pGN86MC5yLK/z744IOXXXbZ0cwf+37zm984ZzB76e3tdd2Aw4cPSw37+te/XlZWJgH80Y9+5PrWP+tF0if4Xvue6yLO67ZrWr1W60UiMGbMmOC749Xpli1bzLYs6LoLPlnIOsAKcqyecsopb731ltmWA1IudNZs9rh5yWmA5bVC12B6bZjrWaz0FbCIn3XWWeb76m3btskGSGq89mXQKdwBllwyrANaGvLSbEtu7HeGykuv2ZSGQg6m5cuXn3vuuebLSZMmvfzyy/6LyPsP602tcjHN+t5d6U5Z3CTvYmtqajZs2GBNye+jguDree+996S6S+GR92d33XXXiSee6L8e/+lelN306tQrBfIeaPHixdY9WPKyP8FxNVgif9RxILnKOzJeK1em57p+5Wi3n9oWn/PdPpv18h//+McVV1wxatSoiRMnWn/X85rZ3J4lS5bY712T99Myg/U3yiDxUUjWnO8xrE6PPfZY5S9csl8yhrPPJjNUVlY+9thj8q/1VzZlPT6fnVjkkigjpxtuuMH1o82sF8mAwbfLdRHndVv5X//V2sl7XcmjnDvmQWWNg3PdHfv8VqaU+xMs/fkEK8ixKqM9+5sB+3GixM1ZOJxr8/kvZYVZg+m1Ya5nsdJXwCK+du3ar371q59++um1114rI1GvHRmMCneAFfAdkv3NmTScs/n86VrKhnWPyxAH5/x79uyR08x1VUHuPrF357RmzZqqqqqNGzcGWa1Pdzmtx+7++++Xku+/Hp/pPnxOfnunXimQM1zrPViDJfIW/wMpv43PunL79H5GXspMTp9g2WdTXspl+g9/+IM1PFVOdmVmOYqsDy1ef/11ea/89NNPn3TSSdYnc7keOTKgSSaTykSr01NPPfXVV1+1/9ff//73cePGKbOtWrVq6NCh1p9FnNVajo2VK1f6b4lJ3oF88YtfdE7PepH0Cr7PxTOPT7CCvAzyCZZMfPjhh+UtipRk+dcZsVyPpSCfYPlkwT5Qsz592b9/f07Hqoww3nnnHZ+V+/OZzf+kyBpMrw1zPYuVvgImQiIj764bGhrk7LBuECwOhTvAkreb1p9vZYjd3NxsTneeJDNmzDBvL5CG81aAL3/5y5s3b7bmnzt3rrxMp9Pvvvvurbfe6vWGz2rPnj1bjgzJuiwl23Pbbbe5bm1LS4vr94+CdHc083fumpoa6yTPulqv6bmuZ86cORJeuS4//vjj1dXV1kfBXuvxmu5PSZlXp16LSNmT7JufYN15551W2cs1OK4GS+QDHkj5bbzXyr2m9zPyd91115QpU3bs2GG/eyP4+W425MSUa7ecmFK0ZDxqTlROdvuyBw8eXLp06TnnnHM0c0uZXND/8pe/SPvZZ58944wzzL/0+Wy/awHbtWuXdG19i1B257nnnrPmlHGz9PLnP//5cMb69etPO+20X/7ylz4rPOo2wNq2bZtU5bvvvlsi8/HHH2/YsMH6/tr555//xBNPdHZ2So5kmxctWjRr1izXdfpfJL2Cr8TTLmC+vALo9dJrtXYSjWeeeUZCIYeQhMIZsVyPJZnfugfroosuct0FnyxY88ulacWKFXJ0SS4uu+yynI7Ve+65R7ZZpshs//rXv771rW/5x1PhM5vPSXE0QDC9Nsz1LFb6Cn6QyLtKmfjb3/424E4NFoW7A729vTKaMb+AIA3rk0bnSWJ+QSaRSHzve9+zf0/BbEjFMgzDevnkk0+efvrpxx13nFQ1uR7JmN3Ztb0Lc/7jjz9eRt9yuHj9GV7G4DIAN3+rqampyfr8M0h3R90+vOnp6fFZrdf0XNfT3t4uJ/zw4cOnT5++adOmrNvjNd2LMrN/p14pkEvbzJkzv5Qh18Ht27f7B8Fr+qCOfMADKb/IeK3ca3o/Iy+jARkojxkzRs5ZqVjmxODnu9mQgam8ty4rK5Ph0UsvvWROVE52exhHjhwpNc88eObNm2fe8GSSbViwYIH/9g/xuNbv3r37xhtvlFQOHTp01KhRV1555SuvvGJF43e/+92ZZ55pHrrSePjhh7OucIijwh3NfLtW1ixbJbk466yzrF9g+tOf/iTTJYwSh/Hjx99yyy1eFzT/i6RX8JV42gXMl9f+er30Wq3d888/L6k/9thj5a3Ivffe64xYrseSzPCd73xHgiMh+slPfiJrdt0FryxY65G34jKCN78t+MADD+R0rH722WeyL6eccorUGhmXr1271j+e9r1wXmPtnCdFTsH02jDXs1jpK/hBIsGcOHHiJ598ouya/74XvkG/AwAAH0VQqCLzz3/+U4aqA70VA+zTTz91fu1Gq2984xuPPfZYlD1GgxMPAIoZA6ys7rjjjv379+/atevCCy/8/ve/P9CbM8Bee+0169uCun322WcPPvjgpEmTrF9qKCaceOgv51+1CvCCPig2MldFuVMIHUdFVvfcc8+YMWNOOOGEm266qZh+JiA/X/jCFx544IFo+pKDc9y4cTKki6a7iHHiAQAAhIwBFgAAQMgYYAEAAIQs6gFWX19fY2OjYRiJRCKZTLp+kXvdunVTp04tKyurrKxcuHDhwYMHgy8LAAAw4KIeYLW2tmb9KcLp06d3dHT09PQcOHBg0aJF1s8bBlkWAABgwEU9wMr1YRRHjhzJ+oAOAACAghL1ACvXx6muXbt2ypQp+S1r5/qFdgAAEJbcBwXFLOpwlJSUpNNpsy0N69ndrjZt2jR+/HjrefVZlyXxAAAMCOqsonA/wVq/fn1NTc2GDRvyWNaJxAMAoA91VlGg92CtWbOmqqpq48aNeSzrisQDAKAPdVYRdThaWlq8vglo5Wb16tU1NTVbtmwJvmxWJB4AAH2os4oB+B2shoYGI6Opqcn+W1ZWbpy3T/X09PgvmxWJBwBAH+qsIi7hIPEAAOhDnVXEJRwkHgAAfaiziriEg8QDAKAPdVYRl3CQeAAA9KHOKuISDhIPAIA+1FlFXMJB4gEA0Ic6qyjmcPCoHAAAokGdVcQlHCQeAAB9qLOKuISDxAMAoA91VhGXcJB4AAD0oc4q4hIOEg8AgD7UWUVcwkHiAQDQhzqriEs4SDwAAPpQZxVRh6Ovr6+xsdEwjEQikUwm5aX7Zrn9tsKOHTsuvfRSI0Ma8jJ4vyQeAAB9qLOKqMPR2tpaW1u7M0MabW1tPjMr2aqrq1uyZEl3xuLFi+Vl8H5JPAAA+lBnFVGHQ0ZFHR0dZlsa9fX1PjMr2Ro+fPiRI0fM9uHDh+Vl8H5JPAAA+lBnFVGHo7y8PJVKme2uri7DMHxmVrJ19dVXL1u27NChQ93d3c3NzfIyeL8kHgAAfaiziqjDUVJSkk6nzbY0SktLfWZWsrV3796xY8ea92ZJY9++fc75fYS7IwAAwEKdVQymT7CmTZu2ePFi6x4seRm8XxIPAIA+1FnFYLoHa9iwYdyDBQBAAaLOKqIOR0tLi9e3CJ25cX6LsLm52fwE68477/QfnPmvCgAAhIg6qxiA38FqaGgwf8uqqanJ/jtY9ty43j61bdu2mTNnfilj1qxZ27dvD94viQcAQB/qrCIu4SDxAADoQ51VxCUcJB4AAH2os4q4hIPEAwCgD3VWEZdwkHgAAPShziriEg4SDwCAPtRZRVzCQeIBANCHOqso5nDwqBwAAKJBnVXEJRwkHgAAfaiziriEg8QDAKAPdVYRl3CQeAAA9KHOKuISDhIPAIA+1FlFXMJB4gEA0Ic6q4hLOEg8AAD6UGcVUYejr6+vsbHRMIxEIpFMJuWl+2Z5/LbC66+/PmPGjBEjRlRVVbW3twfvl8QDAKAPdVYRdThaW1tra2t3Zkijra3NZ2YlW1u3bq2urn7kkUfef//93bt3X3vttcH7JfEAAOhDnVVEHY66urqOjg6zLY36+nqfmZVsyYjqvvvuy69fEg8AgD7UWUXU4SgvL0+lUma7q6vLMAyfmZVsjR49eunSpZWVlSNHjpw3b153d3fwfkk8AAD6UGcVUYejpKQknU6bbWmUlpb6zKxkS2a+/vrrD2TMnj17/vz5zvl9hLsjAADAQp1VDKZPsGRZWcRsyxiroqIieL8kHgAAfaizisF0D9bkyZNlXGW2Ozs7GWABAFAgqLOKqMPR0tLi9S1CZ26UKe3t7XPmzLH+RLhgwYLg/ZJ4AAD0oc4qBuB3sBoaGoyMpqYm++9g2XPjdfvUsmXLKioqEonE3LlzuckdAIACQZ1VxCUcJB4AAH2os4q4hIPEAwCgD3VWEZdwkHgAAPShziriEg4SDwCAPtRZRVzCQeIBANCHOquISzhIPAAA+lBnFcUcDh6VAwBANKiziriEg8QDAKAPdVYRl3CQeAAA9KHOKuISDhIPAIA+1FlFXMJB4gEA0Ic6q4hLOEg8AAD6UGcVcQkHiQcAQB/qrCLqcPT19TU2NhqGkUgkksmkvHTfLO/fVkilUtXV1bkmksQDAKAPdVYRdThaW1tra2t3Zkijra3NZ2bXbN18880rV65kgAUAQOGgziqiDkddXV1HR4fZlkZ9fb3PzM5sbd68ecKECb29vQywAAAoHNRZRdThKC8vT6VSZrurq8swDJ+Zndm6+OKLH330Udf/8kfiAQDQhzqriDocJSUl6XTabEujtLTUZ2YlWy+88MLZZ59t3rblmsghvsLbCQAA8DnUWcVg+gRr0qRJL7/8sut/ZUXiAQDQhzqrGEz3YPXnQykSDwCAPtRZRdThaGlp8foWoTM3PtniEywAAAoHdVYxAL+D1dDQYGQ0NTXZfwfLnpusn1QxwAIAoHBQZxVxCQeJBwBAH+qsIi7hIPEAAOhDnVXEJRwkHgAAfaiziriEg8QDAKAPdVYRl3CQeAAA9KHOKuISDhIPAIA+1FlFMYeDR+UAABAN6qwiLuEg8QAA6EOdVcQlHCQeAAB9qLOKuISDxAMAoA91VhGXcJB4AAD0oc4q8g9Hb29vc3PzhAkTysrK5N9ly5Z9/PHHIW5ZuEg8AAD6UGcV+Yfjtttumzp16htvvCEjLfn3ggsuuP3220PcsnCReAAA9KHOKvIPx+jRo/fs2WO9lLZMCWOTtCDxAADoQ51VRD3A6uvra2xsNAwjkUgkk0l56b5Zbj9etW7duqlTp5aVlVVWVi5cuPDgwYPBt5bEAwCgD3VW0a8/EU6bNu3NN9/s7e2Vf6Ud5E+Era2ttbW1OzOk0dbW5rdxn8/W9OnTOzo6enp6Dhw4sGjRoksuuST41pJ4AAD0oc4q+nWT+5IlS04++eSysjL5d+nSpUFucq+rq5NBktmWRn19vd/GeWfryJEjI0aMCL61JB4AAH2os4qow1FeXp5Kpcx2V1eXYRg+M/tka+3atVOmTAneL4kHAEAf6qwi6nCUlJSk02mzLY3S0lKfmb2ytWnTpvHjx2/dutU5v49Qth8AADhRZxX5h+ONN96or68fNmxYToOY/n+CtX79+pqamg0bNuS0tSQeAAB9qLOK/MNxzjnnrFix4sMPP8xpqX7eg7VmzZqqqqqNGzfm1KnrqgAAQFios4r8w1FWVvbBBx/kulRLS4vXtwiduVGmrF69uqamZsuWLXlsLYkHAEAf6qwi/3CMHTv2nXfeyXWpvr6+hoYGI6Opqcn+O1j23LjePuW8raqnpydgvyQeAAB9qLOK/MPxwAMPXHHFFfv37w9xa/Qh8QAA6EOdVeQWDv+v6RVycAt52wAAGOyos4q4hIPEAwCgD3VWkX84jjnmmBC3QzcSDwCAPtRZRf7hOOmkk/7zn/+EuClakXgAAPShziryD8fdd9991VVX7dq1y/5NwIJF4gEA0Ic6q8g/HIV/k3shbxsAAMWEOquISzhIPAAA+lBnFXEJB4kHAEAf6qwiLuEg8QAA6EOdVcQlHCQeAAB9qLOKuISDxAMAoA91VhGXcJB4AAD0oc4qog5HX19fY2OjYRiJRCKZTHr9hpbrbysEXNZrhf3abgAA4I06q4g6HK2trbW1tTszpNHW1uYzs5KtnJb1XxUAAAgRdVYRdTjq6uo6OjrMtjTq6+t9ZlayldOy/qsCAAAhos4qog5HeXl5KpUy211dXYZh+MysZCunZf1XBQAAQkSdVUQdjpKSknQ6bbalUVpa6jOzkq2sy7o+vYdH5QAAoBt1VsEnWAAAoL+oswruwQIAAP1FnVVEHY6WlhavbwI6c6NM8Vk2KxIPAIA+1FnFAPwOVkNDg5HR1NRk/y0re25cb5/yWTYrEg8AgD7UWUVcwkHiAQDQhzqriEs4SDwAAPpQZxVxCQeJBwBAH+qsIi7hIPEAAOhDnVXEJRwkHgAAfaiziriEg8QDAKAPdVZRzOHgUTkAAESDOquISzhIPAAA+lBnFXEJB4kHAEAf6qwiLuEg8QAA6EOdVcQlHCQeAAB9qLOKuISDxAMAoA91VhGXcJB4AAD0oc4qog5HX19fY2OjYRiJRCKZTMrL4PPs2LHj0ksvNTKkIS+D90viAQDQhzqriDocra2ttbW1OzOk0dbWFnyeurq6JUuWdGcsXrxYXgbvl8QDAKAPdVYRdThkVNTR0WG2pVFfXx98nuHDhx85csRsHz58WF4G75fEAwCgD3VWEXU4ysvLU6mU2e7q6jIMI/g8V1999bJlyw4dOtTd3d3c3Cwvg/dL4gEA0Ic6q4g6HCUlJel02mxLo7S0NPg8e/fuHTt2rPncG2ns27dPWXCIL237BABA3FFnFYPpE6xp06YtXrzYugdLXgbvl8QDAKAPdVYxmO7BGjZsGPdgAQBQgKiziqjD0dLS4vUtQis3XvPIwKu5udn8BOvOO+90HZx5IfEAAOhDnVUMwO9gNTQ0mL9l1dTUZP8dLCs3XvNs27Zt5syZX8qYNWvW9u3bg/dL4gEA0Ic6q4hLOEg8AAD6UGcVcQkHiQcAQB/qrCIu4SDxAADoQ51VxCUcJB4AAH2os4q4hIPEAwCgD3VWEZdwkHgAAPShziqKORw8KgcAgGhQZxVxCQeJBwBAH+qsIi7hIPEAAOhDnVXEJRwkHgAAfaiziriEg8QDAKAPdVYRl3CQeAAA9KHOKuISDhIPAIA+1FlF1OHo6+trbGw0DCORSCSTSXmZ0zyvv/76jBkzRowYUVVV1d7eHrxfEg8AgD7UWUXU4Whtba2trd2ZIY22trbg82zdurW6uvqRRx55//33d+/efe211wbvl8QDAKAPdVYRdTjq6uo6OjrMtjTq6+uDzyMjqvvuuy+/fkk8AAD6UGcVUYejvLw8lUqZ7a6uLsMwgs8zevTopUuXVlZWjhw5ct68ed3d3cH7JfEAAOhDnVVEHY6SkpJ0Om22pVFaWhp8Hmlcf/31BzJmz549f/58ZcEhvrTtEwAAcUedVQymT7Bkurw02zLGqqioCN4viQcAQB/qrGIw3YM1efJkGVeZ7c7OTgZYAAAUCOqsIupwtLS0eH2L0MqN1zzt7e1z5syx/kS4YMGC4P2SeAAA9KHOKgbgd7AaGhqMjKamJvtvXFm58Zln2bJlFRUViURi7ty53OQOAECBoM4q4hIOEg8AgD7UWUVcwkHiAQDQhzqriEs4SDwAAPpQZxVxCQeJBwBAH+qsIi7hIPEAAOhDnVXEJRwkHgAAfaizimIOB4/KAQAgGtRZRVzCQeIBANCHOquISzhIPAAA+lBnFXEJB4kHAEAf6qwiLuEg8QAA6EOdVcQlHCQeAAB9qLOKuISDxAMAoA91VhF1OPr6+hobGw3DSCQSyWRSXuY6TyqVqq6uzjWRJB4AAH2os4qow9Ha2lpbW7szQxptbW25znPzzTevXLmSARYAAIWDOquIOhx1dXUdHR1mWxr19fU5zbN58+YJEyb09vYywAIAoHBQZxVRh6O8vDyVSpntrq4uwzBymufiiy9+9NFHj+aeSBIPAIA+1FlF1OEoKSlJp9NmWxqlpaXB53nhhRfOPvts85Ys10QO8aVlfwAAAAMsh8H0CdakSZNefvlls80nWAAAFA7qrGIw3YPVnw+lSDwAAPpQZxVRh6OlpcXrG4JWbnzmcc4cEIkHAEAf6qxiAH4Hq6Ghwchoamqy/8aVlRufeZwzB0TiAQDQhzqriEs4SDwAAPpQZxVxCYf/FwwBAEA/DXSpLyyEI0/RHEkR9MKOFFQX0fTCjhRaL+xIQXURTS/sSNEjLnni3Ci0Xoqji2h6YUcKrRd2pKC6iKYXdqToEZc8cW4UWi/F0UU0vbAjhdYLO1JQXUTTCztS9IhLnjg3Cq2X4ugiml7YkULrhR0pqC6i6YUdKXrEJU8cUoWGjBQaMlJoyEhBIR1FjwTniXOj0JCRQkNGCg0ZKSiko+iR4DxxbhQaMlJoyEihISMFhXQUPRKcJ86NQkNGCg0ZKTRkpKCQjqJHgvPEuVFoyEihISOFhowUFNJR9EgwAABAyBhgAQAAhIwBFgAAQMgYYAEAAISMARYAAEDIGGABAACEjAEWAABAyBhg/c+6deumTp1aVlZWWVm5cOHCgwcPmtP7+voaGxsNw0gkEslkUl46l/WaJ8iy8OKVkaOZH48xeS1LRnTwyohPpixkRAevyD///PPnnXfe8ccfL9NvuOGGzs5O57JkJHT9CSnpKFYMsP5n+vTpHR0dPT09Bw4cWLRo0SWXXGJOb21tra2t3Zkhjba2NueyXvMEWRZevDJi8RlgkREdvDKSNVNHyYgeXpG/4IILnn766e7u7iNHjqxYsUIGYc5lyUjo+hNS0lGsGGCp5Ko0YsQIs11XVyeXMLMtjfr6ems2q8B7zeOzLHJiz4jFOcAiI5FxzYhzOhmJjFdGZPg1fPhw6yUZ0SePkJKOoscAS7V27dopU6aY7fLy8lQqZba7uroMw7Bms84Nr3l8lkVO7Bmx+AywyIhurhlxTicjkXHNyAcffLBq1Sr7Z4pkRJ88Qko6ih4DrM/ZtGnT+PHjt27dar4sKSlJp9NmWxqlpaXORbzmCbIsslIyYvH5EyEZ0corI17Tj5IRzVwjb96neMIJJ7z99tvORchI6PoTUtJRrBhg/X/r16+vqanZsGGDNSXIGwjefOjjzIjFZ4BFRvTxyohPpo6SEZ18In/48OHly5efe+65zv8iI6HrT0hJR7FigPX/rFmzpqqqauPGjfaJQf4Ezp/PNXHNiMVngEVGNPHKiH+mjpIRbbJGXsZYrvdmkZHQ9SekpKNYMcD6n9WrV8u7wC1btijTW1pavL7EYRV4r3l8lkVWXhmx+NyDRUZ08MqIT6bIiFZekZ87d+7mzZvT6fS777576623ut6DRUZCl0dISUfRY4D1P0Mcenp6jmZ+hqShocHIaGpqsv8MiXVueM3jsyyy8sqI87/si5gNMqKDV0b8M2U2yIgOXpF/8sknTz/99OOOO666unrRokXvvfeefRGzQUZCl0dISUfRY4AFAAAQMgZYAAAAIWOABQAAEDIGWAAAACFjgAUAQL94PXs71wc5B3l6us/i3d3d8+bNGzlyZEVFxfLly3Pd2iBPCkdwDLAAAOgXr2dv5/og5yBPT/dZfP78+bNnz+7MuOaaax566KGctjbIk8IRHAMsAABCY3/2dn9+RNTrGd4+i48aNUrGTGZbxliTJ0/OaWvtlCeFIw8MsAAACI392dv9eQyO11PVfRaXAZa8NNsy0grydJ2ATwpHHhhgAQAQDuXZ23k/yNnn6ek+i8+dO3fOnDkHMq677rqhQ4fmtLUm/yeFIzgGWAAAhMD57O38PsFyrkd5doXX4u+9956MqxKJxOjRo++6664TTzzRdXGvXiw+TwpHcAywAADoL9dnb+dxD1bWZ3j7L265//77ZbCV09baeT0pHMExwAIAoF+8nr2d64Ocsz7n3n/xOXPm7Nmzp7u7+/HHH6+urn7rrbdy2lqfJ4UjDwywAADoF69nb+f6IGefp6fbeS3e3t5eVVU1fPjw6dOnb9q0Kdet9XlSOPLAAAsAACBkDLAAAABCxgALAAAgZAywAAAAQsYACwAAIGQMsAAAAELGAAsAACBkDLAAAABCxgALAAAgZAywAAAAQsYACwAAIGQMsAAAAELGAAsAACBkDLAAAABCxgALAAAgZAywAAAAQsYACwAAIGQMsAAAAELGAAsAACBkDLAAAABCxgALAAAgZAywAAAAQsYACwAAIGQMsAAAAELGAAsAACBkDLAAAABC9n8RucLDB13j4QAAAABJRU5ErkJggg==)
| VMR Tools created by Darren De Zeeuw. |