HeliosphericTomographyIPS
Version: 24The 3-D reconstruction technique incorporates a kinematic solar wind model that conserves mass and mass flux and tomographically fits this to ground-based interplanetary scintillation (IPS) data provided by the Institute for Space-Earth Environmental Research (ISEE), Japan (formerly the Solar Terrestrial Environment Laboratory). The IPS time-dependent 3-D reconstruction analysis has been available at the CCMC since 2001, but has been updated recently to provide time-dependent volumes of density and velocity at slightly higher resolution than before. The IPS analysis allows the 3-D reconstruction of CMEs and other heliospheric structures such as corotating interaction regions (CIRs).
Caveats:
Velocity observations from ISEE are not available during the winter months (generally December to March) because of snow in the mountains of Japan.
In 2010 a more modern radio array was commissioned (SWIFT) that allowed year-round observations of scintillation level (used by the tomography as a density proxy) from an order of magnitude more radio sources than available prior. Previous to this no IPS data were available in the winter months in Japan.
From 2006 onward magnetic fields from GONG data are extrapolated outward from the IPS inner boundary at 15 Rs using the CSSS model and the velocity analysis from the UCSD tomography.
The tomography currently operates from 15 Rs to 3.0 AU
Inputs
Remote sensing data of the solar wind (currently IPS observations from the ISEE in Nagoya, Japan). In-situ measurements from any of 4 near-Earth plasma monitors, ACE, Wind, CELIAS, DSCOVR
Outputs
Solar wind density and velocity throughout the inner heliosphere.
Model is time-dependent.
Change Log
The pgf77 version of the program is now in a format that can be compiled with recently-available free software. Many new changes are made to the program so that it can use single-site and multi-site observations from up to 9 IPS radio observatories.
Version 24 was deployed on August 21, 2024 at the CCMC for ROR service.
Domains
- Solar
- Heliosphere / Inner Heliosphere
Space Weather Impacts
- Geomagnetically induced currents - GICs (electric power systems)
- Ionosphere variability (navigation, communications)
- Atmosphere variability (satellite/debris drag)
Phenomena
- Coronal Mass Ejections
- Ambient Solar Wind
- Magnetic Connectivity
- High Speed Stream
- Interplanetary Shocks
- Coronal Mass Ejections Propagation
- Coronal Mass Ejection Arrival
Publications
- Dunn, T., B. V. Jackson, P. P. Hick, A. Buffington, and X. P. Zhao (2005), Comparative Analyses of the CSSS Calculation in the UCSD Tomographic Solar Observations, Solar Phys., 227, 339.
- Jackson, B. V., P. L. Hick, M. Kojima, and A. Yokobe (1998), Heliospheric tomography using interplanetary scintillation observations 1. Combined Nagoya and Cambridge data, J. Geophys. Res., 103, 12049.
- Jackson, B. V., P. P. Hick, A. Buffington, M. Kojima, M. Tokumaru, K. Fujiki, T. Ohmi, and M. Yamashita (2003), Time-dependent tomography of hemispheric features using interplanetary scintillation (IPS) remote-sensing observations, in Velli, M., R. Bruno and F. Malara, Solar Wind Ten, 679, 75.
- Jackson, B. V., P. P. Hick, A. Buffington, M. M. Bisi, J. M. Clover, and M. Tokumaru (2008), Solar Mass Ejection Imager (SMEI) and Interplanetary Scintillation (IPS) 3D-Reconstructions of the Inner Heliosphere, Adv. in Geosciences, 21, 339.
- Jackson, B. V., P. P. Hick, M. M. Bisi, J. M. Clover, and A. Buffington (2010), Inclusion of in-situ Velocity Measurements in the UCSD Time-Dependent Tomography to Constrain and Better-Forecast Remote-Sensing Observations, Solar Phys., 265, 245, doi: 10.1007/s11207-010-9529-0.
- Jackson, B. V., P. P. Hick, A. Buffington, M. M. Bisi, J. M. Clover, M. Tokumaru, M. Kojima, and K. Fujiki (2011), Three-dimensional reconstruction of heliospheric structure using iterative tomography: A review, J. Atmospheric and Solar-Terrestrial Phys., 73, 1214.
- Jackson, B. V., P. P. Hick, A. Buffington, J. M. Clover, and M. Tokumaru (2012), Forecasting Transient Heliospheric Solar Wind Parameters at the Locations of the Inner Planets, Adv. in Geosciences, 30, 93
- Jackson, B. V., J. M. Clover, P. P. Hick, A. Buffington, M. M. Bisi, and M. Tokumaru (2013), Inclusion of Real-Time in-situ Measurements into the UCSD Time-Dependent Tomography and Its Use as a Forecast Algorithm, Solar Phys., 285, 151.
- Jackson, B. V., D. Odstrcil, D., H.-S. Yu, P. P. Hick, A. Buffington, J. C. Mejia-Ambriz, J. Kim, S. Hong, Y. Kim, J. Han, J., and M. Tokumaru (2015), The UCSD IPS Solar Wind Boundary and its use in the ENLIL 3D-MHD Prediction Model, Space Weather, 13, 104, doi: 10.1002/ 2014SW001130.
- Jackson, B. V., Hick, P. P., Buffington, A., Yu, H.-S., Bisi, M. M., Tokumaru, M., & Zhao, X. (2015). A determination of the north-south heliospheric magnetic field component from solar coronal closed-loop propagation, Astrophys. J. Letts., 803:L1., 1, doi: 10.1088/2041-8205/803/1/L1.
- Jackson, B. V., Yu, H.-S., Buffington, A., Hick, P. P., Nishimura, N., Nozaki, N., Tokumaru, M., Fujiki, K., & Hayashi, K. (2016). Exploration of solar photospheric magnetic field data sets using the UCSD tomography, Space Weather, 14, 1107, doi: 10.1002/2016SW001481.
- Jian, L. K., MacNeice, P. J., Taktakishvili, A., Odstrcil, D., Jackson, B., Yu, H.-S., Arge, C. N., Riley, P., Sokolov, I. V., & Evans, R. M. (2015). Validation for Solar Wind Prediction at Earth: Comparison of Coronal and Heliospheric Models Installed at the CCMC, Space Weather, 13, 316, doi: 10.1002/2015SW001174.
- Jian, L. K., MacNeice, P. J., Mays, M. L., Taktakishvili, A., Odstrcil, D., Jackson, B., Yu, H.-S., Riley, P., Sokolov, I. V. (2016). Validation for Global Solar Wind Prediction Using Ulysses Comparison: Multiple Coronal and Heliospheric Models Installed at the Community Coordinated Modeling Center, Space Weather, 14, 592611, doi: 10.1002/2016SW001435.
- Kojima, M., M. Tokumaru, H. Watanabe, A. Yokobe, K. Asai, B. V. Jackson, and P. L. Hick (1998), Heliospheric tomography using interplanetary scintillation observations 2. Latitude and heliocentric distance dependence of solar wind structure at 0.1-1 AU, J. Geophys. Res., 103, 1981.
- MacNeice, P. , Jian , L., Antiochos, S. K., Arge, C. N., Bussy-Virat, C, D., DeRosa, M. L., Jackson, B. V., Linker, J. A., Mikic, Z., Owens, M. J., Ridley, A. J., Riley, P., Savani, N., & Sokolov, I. (2018). Assessing the quality of models of the ambient solar wind, Space Weather, 16, 1644, doi: 10.1029/2018SW002040.
- Tokumaru, M., Kojima, M., Fujiki, K., Maruyama, K., Maruyama, Y., Ito, H., & Iju, T. (2011). A newly developed UHF radiotelescope for interplanetary scintillation observations: Solar Wind Imaging Facility, Radio Sci., 46, RS0F02.
- Yu, H.-S., B. V. Jackson, P. P. Hick, A. Buffington, D. Odstrcil, C.-C. Wu, J. A. Davies, M. M. Bisi, and M. Tokumaru (2015), 3D Reconstruction of Interplanetary Scintillation (IPS) Remote-Sensing Data: Global Solar Wind Boundaries for Driving 3D-MHD Models, Solar Phys., 290, 2519, doi: 10.1007/s11207-015-0685-0.
- Zhao, X., and J. T. Hoeksema (1995), Prediction of the interplanetary magnetic field strength, J. Geophys. Res., 100, 19.
- Mejia-Ambriz, J.C., Jackson, B.V., Gonzalez-Esparza, J.A. et al. Remote-Sensing of Solar Wind Speeds from IPS Observations at 140 and 327 MHz Using MEXART and STEL. Sol Phys 290, 2539–2552 (2015)
- Aguilar-Rodriguez, E., Mejia-Ambriz, J.C., Jackson, B.V. et al. Comparison of Solar Wind Speeds Using Wavelet Transform and Fourier Analysis in IPS Data. Sol Phys 290, 2507–2518 (2015).
- Bisi, M.M., Americo Gonzalez-Esparza, J., Jackson, B.V. et al. Preface: Radio Heliophysics: Science and Forecasting. Sol Phys 290, 2393–2396 (2015).
- Jackson, B. V., H.-S. Yu, A. Buffington, P. P. Hick, N. Nishimura, N. Nozaki, M. Tokumaru, K. Fujiki, and K. Hayashi (2016), Exploration of solar photospheric magnetic field data sets using the UCSD tomography, Space Weather, 14, 1107–1124
- ian, L. K., P. J. MacNeice, M. L. Mays, A. Taktakishvili, D. Odstrcil, B. Jackson, H.-S. Yu, P. Riley, and I. V. Sokolov (2016), Validation for global solar wind prediction using Ulysses comparison: Multiple coronal and heliospheric models installed at the Community Coordinated Modeling Center, Space Weather, 14, 592–611
- McKenna-Lawlor, S., Ip, W., Jackson, B. et al. Space Weather at Comet 67P/Churyumov–Gerasimenko Before its Perihelion. Earth Moon Planets 117, 1–22 (2016).
- J. S. Morgan, J.-P. Macquart, R. Ekers, R. Chhetri, M. Tokumaru, P. K. Manoharan, S. Tremblay, M. M. Bisi, B. V. Jackson, Interplanetary Scintillation with the Murchison Widefield Array I: a sub-arcsecond survey over 900 deg2 at 79 and 158 MHz, Monthly Notices of the Royal Astronomical Society, Volume 473, Issue 3, January 2018, Pages 2965–2983
- S. McKenna-Lawlor, B. Jackson, D. Odstrcil, Space weather at planet Venus during the forthcoming BepiColombo flybys, Planetary and Space Science, Volume 152, 2018, Pages 176-185
- MacNeice, P., Jian, L. K., Antiochos, S. K., Arge, C. N., Bussy-Virat, C. D., DeRosa, M. L., et al. (2018). Assessing the quality of models of the ambient solar wind. Space Weather, 16, 1644–1667.
- Jackson, B. V., Yu, H.-S., Buffington, A., Hick, P. P., Tokumaru, M., Fujiki, K., et al. (2019). A daily determination of BZ using the Russell-McPherron effect to forecast geomagnetic activity. Space Weather, 17, 639–652.
- Olga Malandraki et al, Current Sheets, Magnetic Islands, and Associated Particle Acceleration in the Solar Wind as Observed by Ulysses near the Ecliptic Plane, 2019 ApJ 881 116
- Nishtha Sachdeva et al, Validation of the Alfvén Wave Solar Atmosphere Model (AWSoM) with Observations from the Low Corona to 1 au, 2019 ApJ 887 83
- Gonzi, S., Weinzierl, M., Bocquet, F.-X., Bisi, M. M., Odstrcil, D., Jackson, B. V., et al. (2021). Impact of inner heliospheric boundary conditions on solar wind predictions at Earth. Space Weather, 19, e2020SW002499.
- Iterative Tomography: A Key to Providing Time-Dependent 3-D Reconstructions of the Inner Heliosphere and the Unification of Space Weather Forecasting Techniques
- Milillo, A., Fujimoto, M., Murakami, G. et al. Investigating Mercury’s Environment with the Two-Spacecraft BepiColombo Mission. Space Sci Rev 216, 93 (2020).
- Mangano, V., Dósa, M., Fränz, M. et al. BepiColombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury. Space Sci Rev 217, 23 (2021).
- C. Tiburzi, B.V. Jackson, L. Cota, G.M. Shaifullah, R.A. Fallows, M. Tokumaru, P. Zucca, Validation of heliospheric modeling algorithms through pulsar observations I: Interplanetary scintillation-based tomography, Advances in Space Research, Volume 72, Issue 12, 2023, Pages 5287-5297
- B.V. Jackson, M. Tokumaru, R.A. Fallows, M.M. Bisi, K. Fujiki, I. Chashei, S. Tyul'bashev, O. Chang, D. Barnes, A. Buffington, L. Cota, M. Bracamontes, Interplanetary scintillation (IPS) analyses during LOFAR campaign mode periods that include the first three Parker Solar Probe close passes of the Sun, Advances in Space Research, Volume 72, Issue 12, 2023, Pages 5341-5360
- R.A. Fallows, K. Iwai, B.V. Jackson, P. Zhang, M.M. Bisi, P. Zucca, Application of novel interplanetary scintillation visualisations using LOFAR: A case study of merged CMEs from September 2017, Advances in Space Research, Volume 72, Issue 12, 2023, Pages 5311-5327
- Kazumasa Iwai, Richard A. Fallows, Mario M. Bisi, Daikou Shiota, Bernard V. Jackson, Munetoshi Tokumaru, Ken'ichi Fujiki, Magnetohydrodynamic simulation of coronal mass ejections using interplanetary scintillation data observed from radio sites ISEE and LOFAR, Advances in Space Research, Volume 72, Issue 12, 2023, Pages 5328-5340
- Jackson, B.V., Tokumaru, M., Iwai, K. et al. Forecasting Heliospheric CME Solar-Wind Parameters Using the UCSD Time-Dependent Tomography and ISEE Interplanetary Scintillation Data: The 10 March 2022 CME. Sol Phys 298, 74 (2023)
- Manuela Temmer. et al. CME propagation through the heliosphere: Status and future of observations and model development, Advances in Space Research, 2023
Code
Code Languages: Fortran, IDL
Relevant Links
- Near real-time analysis
- Program Software is available on SolarSoft
- Program Software is available at UCSD
Contacts
- Bernard Jackson, UCSD (Model Developer)
- Martin Reiss, NASA GSFC CCMC (CCMC Model Host)
- Sandro Taktakishvili, NASA GSFC CCMC (CCMC Model Host)
Publication Policy
In addition to any model-specific policy, please refer to the General Publication Policy.