UMASEP
Version: v20190101In general, the UMASEP scheme makes use of the lag-correlation of solar electromagnetic flux with the particle flux at near-earth. If the correlation is high, the model infers that there is a magnetic connection through which particles are arriving. If, additionally, the intensity of the flux of the associated solar event is also high, then the UMASEP scheme issues an SEP event prediction. UMASEP analyzes soft X-ray, differential and integral proton flux data in order to recognize precursors of three different proton flux situations: well-connected SEP events, poorly-connected SEP events, and "all-clear" situations.
There are five variations of the UMASEP model:
- UMASEP-10 for predicting >10 MeV proton events (Núñez, 2011)
- UMASEP-100 for predicting >100 MeV proton events (Núñez, 2015)
- HESPERIA UMASEP-500 for predicting GLE and >500 MeV proton events (Núñez et al, 2017)
These models correlate X-ray flux with each of the differential proton fluxes measured by the GOES satellites. When the correlation estimation surpasses a threshold, and the associated flare is greater than a specific X-ray peak flux, they predict SEP events in the aforementioned energies.
Note: The Version 2 (https://kauai.ccmc.gsfc.nasa.gov/CMR/view/model/SimulationModel?resourceID=spase://CCMC/SimulationModel/UMASEP/v2.0) also includes UMASEP-30 and UMASEP-50 for the prediction of >30 and >50 MeV SEP events
Inputs
GOES soft x-ray flux, GOES differential and integral proton flux.
The temporal cadence of the analyzed input data is 5 minutes in the case of UMASEP-10 and UMASEP-100, and 1 minute in the case of HESPERIA UMASEP-500.
Outputs
The five models predict SEP/GLE event occurrences. UMASEP-10 and UMASEP-100 also predict the peak SEP flux (HESPERIA UMASEP_500 does not predict the peak flux). The forecast window of these predictions are: 7 hours for >10 MeV protons (UMASEP-10), 3 hours for >100 MeV protons (UMASEP-100), and 1 hour for GLE/>500 MeV events (HESPERIA UMASEP-500).
Model is time-dependent.
Domains
- Heliosphere / Inner Heliosphere
Space Weather Impacts
- Near-earth radiation and plasma environment (aerospace assets functionality)
- Solar energetic particles - SEPs (human exploration, aviation safety, aerospace assets functionality)
Publications
- Real-time prediction of the occurrence of GLE events
- Predicting solar energetic proton events (E > 10 MeV)
- Real-time prediction of the occurrence and intensity of the first hours of > 100 MeV solar energetic proton events
Code
Code Languages: Java
Contacts
- Marlon Núñez, University of Malaga (Model Developer)
Publication Policy
In addition to any model-specific policy, please refer to the General Publication Policy.