Maintenance Notice

On Monday, 09/16/2024, starting at 1 PM to 3 PM Eastern Time, a main CCMC storage system will be unavailable due to maintenance. CCMC services including viewing and download of all ROR runs output as well as online visualization services will be impacted.

Last Updated: 09/16/2024

Fok Radiation Belt Electron

Version: 1.0

The Fok Radiation Belt Model (RBE) is a bounce-averaged kinetic model of the radiation belt electrons. This model calculates the temporal and spatial variation of the phase space density of radiation belt electrons(e-), in the energy range of 10 - 4000 keV. The model considers particle drift, charge exchange loss, in realistic, time-varying magnetic and electric fields. The simulation region is from the dayside magnetopause to the nightside boundary at 10 earth radii. The model is an initial-boundary-value problem, so initial distribution and boundary distribution as a function of time is required to run the model.

Figures

Fok Radiation Belt Electron 1.0 Sample Output

Inputs

3D Magnetic Fields (from SWMF GM/BATSRUS model) 2D Ionospheric height-integrated Potentials (SWMF IE/Ridley model) Equatorial Plasma Density (SWMF GM/BATSRUS) Equatorial Plasma Temperature (SWMF GM/BATSRUS)

Outputs

Equatorial e- fluxes as functions of time, energy and pitch angle. Fluxes at off-equator can be obtained by assuming constant flux along a field line.

Model is time-dependent.

Domains

  • Geospace
  • Magnetosphere / Inner Magnetosphere / RadiationBelt

Space Weather Impacts

  • Near-earth radiation and plasma environment (aerospace assets functionality)

Publications

Code

Code Languages: Fortran, IDL (post processing)

Contacts

Publication Policy

In addition to any model-specific policy, please refer to the General Publication Policy.