The 8th Community Coordinated Modeling Center Workshop

THE DRAG-BASED MODEL

Tomislav Žic1

1Hvar Observatory, Faculty of Geodesy, University of Zagreb, Croatia, EU

Leila M. Mays2,3

2NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
3Catholic University of America, Washington, DC 20064, USA
General classification of space-weather models

- The DBM: a „tool“ for prediction of ICMEs propagation in the heliosphere → primary task for space-weather forecasting
- modeling and forecasting can be divided:
 - a) purely empirical/statistical methods
 - b) kinematical-empirical methods
 - b/c) analytical (M)HD-based models (DBM)
 - c) numerical MHD-based models
The DBM hypothesis

- The DBM hypothesis at large heliocentric distances:
 - the Lorentz force ceases in upper corona
 - ICME dynamics is solely governed by interaction with solar wind (ambient) ← observational facts:
 - fast CME → decelerate
 - slow CME → accelerate
 - collisionless environment:
 - low viscosity
 - low resistivity → dissipative processes are negligible
 - momentum and energy are transferred by magnetosonic waves

\[v \rightarrow w \]
The DBM equations in general form

- At heliocentric distances beyond $R \geq 15 \, r_s$:

- net acceleration (drag is dominant): $a = a_L + a_g + a_d$

- equation of motion in quadratic form (Cargill, 2004):
 $$ R''(t) = -\gamma(R) [R'(t) - w(R)] |R'(t) - w(R)| $$

- parameter γ:
 $$ \gamma \propto C_d \frac{A \rho_{SW}}{M} $$
 - for $R \gg 1r_s = M = M_i + M_v = \text{const.}$

- LDB density expression (Leblanc et al., 1998):
 $$ n_0(R) = \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \quad \text{for} \quad R > 1.8 $$
 $$ k_2 = 3.3 \times 10^5 \, \text{cm}^{-3}, \quad k_4 = 4.1 \times 10^6 \, \text{cm}^{-3}, \quad k_6 = 8.0 \times 10^7 \, \text{cm}^{-3} $$
Solar wind perturbation

- stationary and isotropic
- density flux conservation
- unperturbed solar-wind speed becomes:
 \[w_0(R) = w_\infty \left(1 + \frac{k_4}{k_2} \frac{k_6}{k_2} \right)^{-1} \]

- total solar-wind speed with perturbation term \(w_p(R) \):
 \[w(R) = \begin{cases}
 w_0(R) + w_p(R), & R_1 < R < R_2 \\
 w_0(R), & \text{otherwise}
 \end{cases} \]

- leads to:
 \[\gamma(R) = \gamma_\infty \frac{w_\infty}{w(R)}; \quad n(R) = \frac{k_2}{R^2} \frac{w_\infty}{w(R)} \]

INPUT:
- \(w(R), w_\infty, \gamma_\infty \)

+ "Cone geometry": \(A \propto R^2 \)

\[w_\infty = \lim_{R \to \infty} w_0(R) \]

\[\gamma_\infty = \Gamma \times 10^{-7} \text{ km}^{-1} \]

\[\gamma_\infty = \lim_{R \to \infty} \gamma(R) \]
Parameter γ, SW density and speed
Options of ICME cone-geometry
DBM with constant w and self-similar CME geometry

- solar-wind speed w:
 - isotropic and constant
 - parameter γ is constant as well
- „self-similar“ CME expansion:
 - the initial cone-shape of CME is preserved during its interplanetary propagation
- for a given set of input parameters the model provides the ICME Sun-“target” transit time, the arrival time, and the impact speed
Basic $w=\text{const.}$ & SS-expansion

(http://oh.geof.unizg.hr/~tomislav/CDBM-SS/)

Forecasting the Arrival of ICMEs: The Drag-Based Model with constant solar wind speed and self-similar CME expansion

CME take-off date:
CME take-off time (UTC):
γ - constant drag parameter:
w - constant solar wind speed:
R_0 - starting radial distance of CME:
v_0 - speed of CME at R_0:
Select target from the list:

© Tomislav Žic, Hvar Observatory, 2013

04/12/2016 T. Žic, et al. - The DBM
Advanced $w=\text{const.}$ & SS-expansion

(http://oh.geof.unizg.hr/~tomislav/CDBM-SS/)

Forecasting the Arrival of ICMEs: The Drag-Based Model with constant solar wind speed and self-similar CME expansion

<table>
<thead>
<tr>
<th>Basic DBM</th>
<th>Advanced DBM</th>
<th>Documentation</th>
</tr>
</thead>
</table>

- **CME take-off date:** Apr 8 2018
- **CME take-off time (UTC):** 15 h 10 min
- **γ - constant drag parameter:** $0.2 \times 10^{-7} \text{ km}^{-1}$
- **w - constant solar wind speed:** 450 km/s
- **R_0 - starting radial distance of CME:** 20 R_{Sun}
- **ν_0 - speed of CME at R_0:** 1000 km/s
- **λ - CME’s angular half-width:** 30 deg
- **φ_{CME} - central meridian distance of source region:** 0 deg

Select target from the list:

© Tomislav Žic, Hvar Observatory, 2013

© Žadnja obnova stranice: 8.4.2016.
Results $w=\text{const.}$ & SS-expansion

(http://oh.geof.unizg.hr/~tomislav/CDBM-SS/)

Forecasting the Arrival of ICMEs: The Drag-Based Model with constant solar wind speed and self-similar CME expansion

<table>
<thead>
<tr>
<th>Results</th>
<th>Kinematic plot</th>
<th>CME geometry plot</th>
<th>Documentation</th>
</tr>
</thead>
</table>

Output:

CME arrival at target (date & time): 14.04.2016 at 18h:12min
Transit time: 50.20 h
Impact speed at target (at 1 AU): 634 km/s

Input parameters:

CME take-off date & time: 12.04.2016 at 16h:00min
$\gamma = 0.2 \times 10^{-7}$ km$^{-1}$, $w = 450$ km/s,
$R_0 = 20 \, r_{\text{Sun}}$, $v_0 = 1000$ km/s, $\lambda = 30^\circ$, $\varphi_{\text{CME}} = 0^\circ$
$R_{\text{target}} = 1$ AU, $\varphi_{\text{target}} = 0^\circ$

Calculated in 3.15 seconds.
Plots \(w = \text{const.} \) & SS-expansion

(http://oh.geof.unizg.hr/~tomislav/CDBM-SS/)

● UP: Propagation of '+ CME' point in geometry plot

● LEFT: Ecliptic plane cross-section of CME propagation
Online applications of DBM with $w=\text{const.}$ & SS-expansion

Used on web pages of:

- Hvar Observatory - Forecasting the Arrival of ICMEs: http://oh.geof.unizg.hr/DBM/dbm.php

 (courtesy of Leila M. Mays)

CCMC Contact: Leila Mays
(M.Leila.Mays@nasa.gov)
DBM with $w(R)$ and CME leading-edge flattening

- solar-wind speed w:
 - is radially dependent: $w(R)$
 \rightarrow parameter γ becomes function of radial distance as well: $\gamma(R)$
- each CME leading-edge segment propagates independently
 \rightarrow the initial cone-geometry flattens
Plots $w(R)$ \& CME edge flattening
(http://oh.geof.unizg.hr/~tomislav/DBM/)

Output:
- CME arrival at target (date \& time): 14.04.2016 at 18h:20min
- Transit time: 50.35 h
- Impact speed at target (at 1 AU): 633 km/s

Input parameters:
- CME take-off date \& time: 12.04.2016 at 16h:00min
- $\gamma_\infty = 0.2 \times 10^{-7}$ km$^{-1}$, $w_\infty = 450$ km/s,
- $R_0 = 20$ r_S, $v_0 = 1000$ km/s,
- $\lambda = 30^\circ$, $\varphi_{CME} = 0^\circ$
- $R_{\text{target}} = 1$ AU, $\varphi_{\text{target}} = 0^\circ$

Calculated in 13.48 seconds.
Example of DBM + ENLIL model
(http://oh.geof.unizg.hr/~tomislav/DBM-ENLIL/)

\[w(R), \gamma(R) \rightarrow \text{CME-edge flattening} \]

- drag parameter: \(\Gamma = 0.2 \)
- initial CME distance: \(R_0 = 31 \, r_S \)
- initial CME speed: \(v_0 = 1000 \, \text{km/s} \)
- CME half-width: \(\lambda = 60^\circ \)
- launching CME meridian distance: \(\varphi = 150^\circ \)
- target: Mars

\begin{itemize}
 \item LEFT: Cross-section of CME propagation in ecliptic plane. The CME take-off time: February the 10th, 2009 at 06:13 UT.
 \item RIGHT: Propagation of '+' CME' point in geometry plot
\end{itemize}
Automatic Fitting

• INPUT: observed ICME dataset: \(\{ (R_0, v_0), \ldots, (R_N, v_N) \} \)

• OUTPUT: DBM parameters \((\Gamma, w_\infty, R_0, v_0)\)

• The least-square fitting (LSF):
 – successive variation of DBM parameters → minimal deviation between observed \(v_i\) and DBM-calculated speeds \(v(R_i)\):

\[
\sigma(\Gamma, w_\infty, R_0, v_0) = \sqrt{\frac{1}{N+1} \sum_{i=0}^{N} [v_i - v(R_i)]^2}
\]

→ \(\sigma_{\text{min}}\) →
 → the best \((\Gamma, w_\infty, R_0, v_0)\)

• for real-time space-weather forecasting (successive fitting as ICME propagates)

The fitted standard deviation \(\sigma_{\text{min}}\) is smaller than the observed \(\sigma_o\)!
Conclusion

- The drag-based model is useful because:
 - it is simple, fast and versatile
 - its accuracy is not worse in comparison to the other advanced models (Vršnak et al., 2014)
 - it is suited for a fast real-time space-weather forecasting (Žic et al., 2015)

- Drawbacks:
 - the magnetic field/Lorentz force is not included in the DBM
 - CME-CME interaction is problematic for calculation
 - the DBM is not basically designed for usage in a complex heliospheric environment
 (Will DBM + ENLIL provide better forecasting results?)
Thank you for your attention!
References