On-Line Visualization

Quiet Ionosphere/Thermosphere

Heliophysics Laboratory Primer Quiet Ionosphere/Thermosphere

Heliophysics Laboratory Primer

This primer has been created to help you to:

- 1. use the CCMC tools designed to interrogate Heliophysics models at CCMC, and
- 2. obtain a top level view of the connectivity and naming of regions and parameters that comprize the heliophysics system.

The heighest level picture of the Heliophysics system shows three components - the Sun, the solar wind, and the magnetosphere while buried inside the magnetosphere is the ionosphere and thermosphere. Click for the specific primer:

On-Line Visualization Quiet Ionosphere/Thermosphere

Physical Variables written by CTIPe simulations (PDF file)

Select time step

Update Plot Update Plot will update (generate) the plot with the chosen time and plot parameters below. This will take some time (typically 10-30s) as data is read in and processed.

Select Plot Mode and Physical Variables to be Displayed from Pull-Down Menus

Choose Plot Area

Choose Plot Area:

All **Plot Modes** except **Line Plot** and **Vertical Plot**: Select lower left corner of plot area on the left, and the upper right corner on the right.

Line Plot: Select start point of line on the left, the end point on the right.

Vertical Plot: Select lon and lat position on the left.			Choose Cut Plane:	
$\log_1 0$	lon ₂ 360	Range: 0 360 deg	lon=constant O 180	
lat ₁ -90	lat ₂ 90	Range: -90 90 deg	lat=constant O 0	
CTIP data: the vertical coordinate can either be IP or H for determining plot range or cut				IP=8 cut plane
plane. Note that the full range in H will not be reached at all times. Limits modified within the plot.			or selections of H may be	Is selected for 2D Plot
• IP ₁ 1	IP ₂ 15	Range: 1 15 []	IP=constant 💿 🛛 8	
O H ₁ 80	H ₂ 450	Range: 80 1000 km	H=constant O 150	
Render polar plot with maximum colatitude: 40				

H (height) in [km] corresponding to pressure level number **IP** The height of a pressure level varies spatially and with time. Heights covered start at about 80 km (**IP**=0) and reach a few hundred km above ground (the maximum found for **IP**=14, the top layer, is typically between 450 km and 1000 km). The height can be used as an alternative 3rd coordinate for plotting.

Example: ColorContour Plot Mode Neutral Gas Temperature for IP=12

Select Time Step: e.g., Date: 2010/03/21 Time: 12:00:00 Choose Plot Mode: ColorContour(2D) Choose Physical Variable for Color (Q1 menu): e.g., T_n Choose Plot Area: e.g., IP=constant=12 Click "Update Plot"

03/21/2010 Time = 12:00:00 UT |P= 12.0

Example: Color+Vector Plot Mode Neutral Gas Temperature and Velocity Vectors

Select Time Step: Date: 2010/03/21 Time: 12:00:00 Choose Plot Mode: Color+Vector Choose Physical Variable for Color (Q1 menu): T_n Choose Physical Variable for Vector (Q2 menu): any component of the neutral gas velocity (Vn_lat, Vn_lon, or Vn_IP) Choose Plot Area: IP=constant=12 Click "Update Plot"

Example: Color+Vector Plot Mode Lock Color Range. Normalize Arrow Length

Example: Color+Vector Plot Mode Polar Plot

Request a Movie with Selected Plot Settings

Select radio button

Create GIF movie with current plot \odot settings (not for SWX plot modes) Note: This is a queue submission system requiring the following three additional inputs: Start Time: Date: 2010/03/24 Time: 12:00:00 🗘 End Time: Date: 2010/03/22 Time: 12:00:00 🗘 • Email address for notification (replace the example email address with yours): Maria.M.Kuznetsova@nasa.gov Your F-mail **Note:** The movie will be *requested* but **NOT be shown** in this interface. You will get an email with a download URL when the request has been completed (this will take at least a few minutes). Only one request can be pending at a time for each client IP or email address.

Example: Vertical Line (1D)

Select Time Step: e.g., Date: 2010/03/21 Time: 18:00:00 Choose Plot Mode: Vertical Line (1D) Choose 1st Physical Variable (Q1 menu): rho Choose 2nd Physical Variable (Q2 menu): Vn_lat Choose 3rd Physical Variable (Q3 menu): Vn_lon

Vertical Plot: Select lon and lat position on the left.

Click "Update Plot"

Example: Vertical Line (1D) (results)

List Data From the Plot in ASCII

List Data (check to get any of the following outputs which apply to movie requests as well):

What: • Plot variables from above

O Include all primary model output parameters (**Warning:** text files may become large).

Select radio button

Check box

ASCII data output (4.79 kB)

Click here to download data

Runs-on-Request: Contact CCMC Staff Visualization: Dr. Lutz Rastätter

```
# Data format string: '(6E12.4)'
# Data printout from CCMC-simulation: version 1.1
# Data type: CTIP ionosphere/thermosphere
              CTIPe Equinox quiet 030510 Missing data:
# Run name:
                                                                 NaN
# Date, time:
                      2010
                                                 21
                                                    18:00:00
                                      з
# Output data: point locations with 61 elements
# lon
              lat
                          н
                                      rho
                                                   Vn lat
                                                               Vn lon
# [deq]
              [deq]
                          km
                                       [kq/m^3]
                                                   [m/s]
                                                               [m/s]
  9.0000E+01 6.0000E+01
                          8.0000E+01
                                      1.8739E-05 -2.7295E+00
  9.0000E+01
              6.0000E+01
                          8.6167E+01
                                       6.6990E-06
                                                   3.0762E-01
                                                              -3.4701E+00
  9.0000E+01 6.0000E+01
                          9.2333E+01
                                     2.1612E-06 -1.1042E+00 -1.1246
  9.0000E+01 6.0000E+01
                          9.8500E+01 7.2422E-07 -1.6075E+00 -3.6367E+00
  9.0000E+01 6.0000E+01
                          1.0467E+02 2.8674E-07
                                                   1.5463E-01 -6.8714E+00
```

Example: Vertical Line (1D) (optional) Log Scale. Lock Range.

Select Time Step: e.g., Date: 2010/3/30 Time: 03:00:00 Choose Plot Mode: Vertical Line (1D) Select Vertical Coordinate: H Set Longitute: 284; Set Latitude: 55 Choose 1st Physical Variable (Q1 menu): Ne Choose 2nd Physical Variable (Q2 menu): N_O+ Choose 3rd Physical Variable (Q3 menu): N_O2+

Click "Update Plot"

Example: Vertical Line (1D) (optional) Log Scale. Lock Range.

