Validation of modeled plasma density changes during geomagnetic storms

Parameters: TEC, NmF2, hmF2

Tim Fuller-Rowell

NOAA Space Weather Prediction Center and CIRES University of Colorado
Examples: Build-up of plasma and structure at mid-latitudes

- TEC maps from GPS available in some regions and longitude sectors
- RO and in-situ satellite observations
- Point locations with ionosondes

Foster and Coster

Mannucci et al 2005

CEDAR-GEM Workshop, Boulder
Ionosonde NmF2, hmF2 at Millstone Hill (positive and negative response)
Suggested metrics for model validation of storm response

• Challenges
 • Bias in TEC measurements and map - use storm-quiet response
 • hmF2 from ionosondes is an indirect measure
 • Predicting the magnitude of a feature in the wrong place (high RMSE)

• Possible methodologies and metrics
 • Differential validation – used to validate TEC maps from GPS
 • RMSE comparison with regional TEC maps (or difference from normal)
 • RMSE with N/S cuts through TEC maps in well-observed sectors
 • RMSE with ionosonde NmF2 and hmF2 (or +/- phases, divide into low, mid, and high latitude response)
 • RMSE with in-situ satellite N_e
Example of regional TEC map

Target Users: Positioning and Navigation community

- Kalman filter over CONUS + ground-based GPS data, IRI background model, solve for receiver biases, 15-minute cadence, 15 to 30 minute latency

- What is accuracy of storm response
Differential Code and Phase

Site = arp3, SV = 1, L1 - L2 Phase, L2 - L1 Pseudorange in Meters

April 7th, 2014
CEDAR-GEM Workshop, Boulder
“Differential” Validation

- Integrate through US-TEC model at two different times.
- Compare directly to the phase difference in the original RINEX data file.
- As time separation increases, errors in US-TEC map become uncorrelated and approach true uncertainty.

April 7th, 2014 CEDAR-GEM Workshop, Boulder

Araujo-Pradere et al. 2006
US-TEC “Differential” Validation

- Validation stations not included in assimilation process
- Build up statistics every 5th day over 6 months
- Daily average RMSE for each site
Validate models against regional TEC maps

- RMSE
- departures from normal

Observational TEC map accuracy:

Slant = 2.4 TEC units
Vertical = 1.7 TEC units
Global TEC data (Goncharenko, Coster)

- GPS TEC, MIT Haystack Observatory:
 - ~2000 GPS receivers, 5 min, 1°x1° resolution
 - Longitudes selected: 75°W, 40°E, 120°E
- Too many gaps for a global RMSE

April 7th, 2014 CEDAR-GEM Workshop, Boulder
GPS TEC cut through 75°W, 12LT

- Hourly or daily RMSE along three longitude sectors
- Departures from normal

April 7th, 2014 CEDAR-GEM Workshop, Boulder
Ionosondes at low, mid, and high latitude
NmF2, hmF2, RMSE, difference from average

Station map and examples of real-time validation:

April 7th, 2014 CEDAR-GEM Workshop, Boulder
Suggested metrics for model validation of storm response

• Challenges

 • Bias in TEC measurements and map - use storm-quiet response
 • hmF2 from ionosondes is an indirect measure
 • Predicting the magnitude of a feature in the wrong place (high RMSE)

• Possible methodologies and metrics

 • Differential validation – used to validate TEC maps from GPS
 • RMSE comparison with regional TEC maps (or difference from normal)
 • RMSE with N/S cuts through TEC maps in well-observed sectors
 • RMSE with ionosonde NmF2 and hmF2 (or +/- phases, divide into low, mid, and high latitude response)
 • RMSE with in-situ satellite N_e
Validation Statistics: "differential" TEC

<table>
<thead>
<tr>
<th>IRI</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>pabh</td>
<td>2.6</td>
<td>4.1</td>
<td>4.4</td>
<td>3.2</td>
</tr>
<tr>
<td>ybbh</td>
<td>3.4</td>
<td>4.5</td>
<td>4.6</td>
<td>4.0</td>
</tr>
<tr>
<td>bill</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.2</td>
</tr>
<tr>
<td>clk1</td>
<td>2.3</td>
<td>2.4</td>
<td>5.5</td>
<td>4.3</td>
</tr>
<tr>
<td>hbrk</td>
<td>3.7</td>
<td>3.6</td>
<td>6.0</td>
<td>4.7</td>
</tr>
<tr>
<td>arp3</td>
<td>4.9</td>
<td>5.1</td>
<td>5.1</td>
<td>5.3</td>
</tr>
<tr>
<td>wes2</td>
<td>2.9</td>
<td>4.0</td>
<td>4.9</td>
<td>5.0</td>
</tr>
<tr>
<td>vims</td>
<td>3.5</td>
<td>4.9</td>
<td>5.8</td>
<td>4.8</td>
</tr>
<tr>
<td>ccv3</td>
<td>5.9</td>
<td>6.2</td>
<td>5.1</td>
<td>7.6</td>
</tr>
<tr>
<td>AVE</td>
<td>3.5</td>
<td>4.4</td>
<td>5.3</td>
<td>4.6</td>
</tr>
</tbody>
</table>

2.4 TEC units
Process 6
Evolution of neutral composition change

Response and recovery of O/N\textsubscript{2}
Movement of boundaries in O/N\textsubscript{2}
Observations: TIMED/GUVI, SSUSI, GOLD,....

Process 7
Ionospheric negative storm phase at mid latitude

- Validate TEC from GPS maps
- Validate in-situ from satellite
- Validation point with ionosondes
Process 8
Disturbance dynamo

Difficult to validate.
Confused by penetration electric field and its time constants.

Process 2 and 8

- Possibility: Combine penetration and disturbance dynamo at low latitudes

Time series of electric field (e.g., Jicamarca, magnetometers).
Validation of total E at low latitudes, penetration + dynamo + time constants
Validate total EIA response
Suggested process-orientated storm metrics for model validation

Process 1: Quantifying the geomagnetic storm energy dissipation

Process 3: Build-up of plasma and structure at mid-latitudes

Process 4: Gravity wave propagation from high to low latitude

Process 6: Evolution of neutral composition change

Process 7: Ionospheric negative storm phase at mid latitude

Process 2 and 8: Combined penetration and dynamo electric fields