Model	Model Developers	Reference	Model Type	Input	Output
IRI	D. Bilitza (NASA/GSFC) URSI/COSPAR Working Group on IRI	https://ccmc.gsfc.nasa.gov/ models/modelinfo.php?mod el=IRI https://iri.gsfc.nasa.gov/	Empirical	 F10.7 (daily, 81-day running mean of the daily F10.7 value, PF10.7) R12 (13-month-running mean of sunspot number) Ionospheric index (IG12): Index based on foF2 measurements from a dozen ionosondes correlated with the CCIR foF2 maps ap (history over the preceding 33 hours) 	 Electron density, electron temperature, ion temperature, ion composition (O+, H+, He+, NO+, O+2), ion drift, TEC
IFM	Robert W. Schunk et al. (USU)		Physics-Based Ionosphere Model	• F10.7 • Кр	 Electron density NmF2 hmF2 TEC (Total Electron Content)
SAMI3	Joseph Huba, Glenn Joyce, Marc Swisdak Plasma Physics Div., NRL and Icarus Research, Inc.	https://ccmc.gsfc.nasa.gov/ models/modelinfo.php?mod el=SAMI3	Physics-Based Ionosphere Model	 F10.7 (1 day and 3 months average) AP Index ExB Drift velocity 	 Ion density Ion temperature Ion velocity Electron temperature NmF2 hmF2 TEC (Total Electron Content)
CTIPe	Timothy Fuller- Rowell et al NOAA SEC	https://ccmc.gsfc.nasa.gov/ models/modelinfo.php?mod el=CTIPe	Physics-based Coupled Ionosphere- Thermosphere Model	 Fixed or time-dependent Hemispheric Power in gigawatts Hemispheric Power Index (activity level) during the simulated time interval interpolated on 12 minute temporal grid. Ionospheric electric fields: At the present time the CTIPe model is coupled with the Weimer ionosphere electrodynamics model which calculates ionospheric electric fields for solar wind parameters (density, solar wind velocity magnitude, IMF magnitude and clock angle) F10.7 cm 	 Neutrals: The three components are wind vector, temperature, the number density of the three major species O, O2, N2, and mean molecular mass. Ion and electron: H+, O+, electron number densities and temperatures over height range from 140 km to 2,000 km, plus N2+, O2+, N+ below about 500 km. Height and electron number density of ionospheric F2 peak.

GITM	A.J. Ridley et al.	https://ccmc.gsfc.nasa.gov/	Physics-based	• F10.7	• Temperatures: neutral, ion,
	Department of	models/modelinfo.php?mod	Coupled	Hemispheric Power Index (HPI)	electron (K)
	Atmosphere,	<u>el=GITM</u>	Ionosphere-	 Interplanetary Magnetic Field 	Neutral winds: zonal,
	Oceanic and Space		Thermosphere	Solar wind velocity	meridional, vertical (m/s)
	Sciences, University		Model	 Solar irradiance (for event runs) 	Plasma velocities: zonal,
	of Michigan				meridional, vertical (m/s)
					 Neutral mass density (kg/m3)
					• Number densities: neutral (O,
					O2, N(2D), N(2P), N(4S), N2, and
					NO), ion (O+(4S), O+(2D),
					O+(2P), O2+, N+, N2+, and NO+),
					and electron (m-3)
TIE-	R. G. Roble et al.	https://ccmc.gsfc.nasa.gov/	Physics-based	Solar EUV inputs:	 Primary timed-dependent
GCM	High Altitude	models/modelinfo.php?mod	Coupled	F107 (current daily F10.7 solar index) and F107A	output fields, specified in
	Observatory,	<u>el=TIE-GCM</u>	lonosphere-	(81-day center-averaged F10.7 solar index)	latitude, longitude, and pressure
	National Center for		Thermosphere	Particle precipitation:	level:
	Atmospheric		Model	Hemispheric Power in GW, obtained either from	Geopotential height: Height of
	Research			3-hour Kp index or from IMF Bz and solar wind	pressure surfaces (cm)
				speed	Temperatures: Neutral, Ion,
				Ionospheric electric fields at high latitudes:	electron (K)
				Provided by Heelis model and Weimer model.	Neutral Winds: zonal, meridional,
				Inputs for Heelis model:	(Cff S-1), Vertical (S-1)
				Cross polar cap potential in kV, obtained from 3-	N(2D) (mass mixing ratios
				hour Kp index Hemispheric Power in GW,	dimonsionless)
				obtained from 3-hour Kp index Optional (not	lon and electron densities: O+
				internenced): y-component of the	O^{2+} Ne (cm-3) (NO+ is calculated
				Interplanetary magnetic field (by) in fit	from Ne - $(0+ + 02+)$
				 Inputs for Weimer model: Interplanetary magnetic field, By and Bz, in nT 	Electric potential: (V)
				Solar wind density and speed o and y in cm 2	
				and km s-1	 Other fields are available as
				 Inputs for lower boundary: 	secondary histories which can be
				Diurnal and semi-diurnal migrating tides	set as needed.
				specified by the GSWM	

USU-	R.W. Schunk, L.	https://ccmc.gsfc.nasa.gov/	Physics-based	• The IFM model uses F10.7, average F10.7, daily	The primary output from the
GAIM	Scherliess, J.J. Sojka,	models/modelinfo.php?mod	Data	Ap and eight 3-hour Kp indices. The IFM also	USU GAIM 2.3 model is a time-
	D.C. Thompson, L.	el=USU-GAIM	Assimilation	uses empirical inputs for the neutral	dependent 3-dimensional global
	Zhu		Model	atmosphere and magnetosphere parameters	electron density distribution.
	Center for			needed by the model, e.g., neutral wind,	Vertical Equivalent Total
	Atmospheric &			electric field, auroral precipitation, solar EUV,	Electron Content (TEC) obtained
	Space Sciences,			and resonantly scattered radiation.	from the leveled, bias corrected,
	Utah State			• The USU GAIM 2.3 model accepts data from	slant TEC values assimilated by
	University			multiple sources, including slant TEC from GPS	the model and GPS stations
				ground stations via RINEX files, a-priori bias	coordinates are also provided.
				information for GPS satellites and ground-	
				stations, true-height electron density profiles	
				from DISS ionosondes via SAO formatted files,	
				SSULI UV radiances via SDF2 files, and DMSP	
				IES in-situ electron densities via EDR files. At	
				present, the automated CCMC runs on request	
				system only uses GPS observations from up to	
				400 ground receivers spread around the world.	
				Data from other sources will be added at later	
				times when they become available for	
				automatic acquisition.	