Space Environment modeling is not just collections of models. Confidence assessment of model predictions is an essential element.

- **Quantitative assessment** of models ability to simulate and predict space environment events and impact on human and technologies.
- Facilitate interaction between developers and users of space environment models.
- Define physical parameters and metrics formats relevant to specific applications.
- Address uncertainties in model-data comparisons.

CCMC provides support by archiving results and developing on-line interactive model validation systems, coordinate community tools development.

Joint publications (> 10 participating models, 8 papers)

FOCUS SO FAR: Comparison of time series from model and observation at specific locations/trajectories.
Processes for Validation
(Tim Fuller-Rowell)

Process 1: Quantifying the storm energy input.

Process 2 and 8: Combined penetration and dynamo electric fields and EIA response

Process 3: Build-up of plasma and structure at mid-latitudes

Process 4: Gravity wave propagation from high to low latitude

Process 6: Onset/timing/evolution of neutral composition change

Process 7: Ionospheric negative storm phase at mid latitude
Collaborative Development with Model Owners

Driver Swapping (MI Coupling) Patch-Panel Tool

- **High-Latitude Electric Potential Models**
 - empirical
 - data assimilation
 - global MHD
 - Heelis
 - Weimer
 - Foster
 - Heppner & Maynard
 - Ridley
 - AMIE
 - SuperDARN
 - SWMF
 - OpenGGCM
 - LFM

- **Particle Precipitation Models**
 - empirical analytical
 - global MHD
 - Fuller-Rowell & Evans
 - Hardy et al.
 - Ovation Prime
 - Roble & Ridley

- **Penetration Electric Field Models**
 - inner magnetosphere
 - Driven by SWMF:
 - FRC
 - CRCM
 - RCM
 - Driven by Tsyganenko:
 - RCM

All drivers are converted to a common format. The tool is called as a KAMELEON subroutine to provide values on the grid:

call kameleon (model, time, mlts, mlats, variables, values_output)

IT Models: CTIPE/TIE-GCM/GITM