Model Delivery to CCMC

M. Kuznetsova and L. Rastaetter
Outline

• Model delivery, installation, testing. Review of actions. Status.
• Lessons learned.
• Outlook
Action Plan: Jan 31, 2011 - SWW

- Delivery
- Installation: compiling, running test cases provided by modelers
- Speed evaluation
- Robustness/Stability tests (long runs)
- Sanity checks (3D output inspection). Consistency checks (modelers compare CCMC outputs with run results obtained at their computers)
- Selection of up to two model settings.
- No model-data comparison yet. Need to agree on what time series to compare and metrics format.
Delivery, Installation

- Global MHD models delivered prior to Jan 31, 2011
 - LFM
 - SWMF
 - OpenGGCM
- Successful installation of all global MHD models (~ Feb, 2011). A lot of improvements in comparison with previous versions. For example,
 - OpenGGCM: include coupling with RCM as an option
 - LFM: much more stable and easy to manage version
 - SWMF: coupling with RCM as a default
- Empirical models:
 - Weimer Delta-B prediction model, idl latest update, April 19, 2011
 - Weigel model.
Model Settings Details

- **LFM**
 - 1 setting only, grid: 53 x 48 x 64. Needs 24 procs
 - No RCM, SM coordinates.
 - Restart capability. PVM control of several executables add some complexity.

- **SWMF**
 - 2 settings (both with RCM). Differences are in the details of RCM-BATSRUS coupling. Same grid (~ 1mln cells) for both settings
 - GSM coordinates, dipole updates with time
 - Calculates Kp and ground perturbations at selected locations.
 - Restart capability

- **OpenGGCM:**
 - 2 settings with different grids. Coupled with CTIM. No RCM.
 - GSE coordinates, dipole is not updating.
 - No restart capability
Speed Evaluation

- CCMC dedicated eight 8-core nodes for speed and robustness tests:
 - Dell Beowulf Cluster (less than 3 years old)
 - 64 processors (2.66GHz Intel)
 - Infiniband network
- PG compiler (pgf90, pf77), mvapich mpi libraries (default)
 - SWMF: 2 – 4.5 x RT (2-4 times slower than realtime)
 - OpenGGCM: setting1 (preferred): 2 x RT, setting2: 6 x RT
 - LFM (24 procs): 4 x RT
- Intel compiler (ifort), openmpi libraries (newly installed):
 - SWMF: < 1-2 RT
 - OpenGGGM: setting1: 2 x RT
 - LFM – ???
Robustness/Stability/Consistency Tests

- Halloween storm (GEM Event 1):
 - **October 29th, 2003 06:00 UT - October 30th, 06:00 UT**
 - Runs initiated 5 hours prior to intended model-data comparison (29 hours entire run including startup)
 - Solar wind input file provided by A. Ridley: http://ccmc.gsfc.nasa.gov/support/GEM_metrics_08/sample_formats/imf2003102.txt

- Procedure
 - Use the same set of nodes. Take turns to run models.
 - Test run at CCMC – feedback to modelers – update/bug fix - new test at CCMC. Approximately 3 rounds per model.

- Results of robustness tests:
 - SWMF: passed
 - LFM: passed
 - OpenGGCM: failed (setting1: 3 h, setting2: 12 h). More work is needed.
Lessons learned

- Compiler/ MPI Library can change the speed on factor of 2-3.
- Model stable for one compiler may require bug fixes to make it work on another compiler. May be time consuming.
- Restart capabilities are very helpful (SWMF, LFM).
- Real-time tags in model output file names are very helpful (LFM).

- The following issues have to be addressed prior to selection of time intervals for model validation:
 - Inflow boundary is typically set at 30 Re. For low Mach numbers the bow shock can cross the inflow boundary
 - How to handle large Bx? Keeping large Bx constant contributes to low Mach number after the shock
 - Example: GEM Event 5: May 15-16 2005
Outlook

• Great Progress!
• Significant improvement in all models.
• SWMF, LFM are ready for metrics evaluations. More work is needed with OpenGGCM.
• Results of metrics studies will be used in the second round of GEM GGCM Modeling Challenge.

• On-going activity supporting NOAA SWPC is also extremely beneficial to
 CCMC Runs-on-Request users
 NASA/GSFC Space Weather Desk supporting NASA Robotic Missions
 GEM Community