SOPA Corrections to the MPA Measurements

Particle distribution functions in the plasma sheet have suprathermal tails.

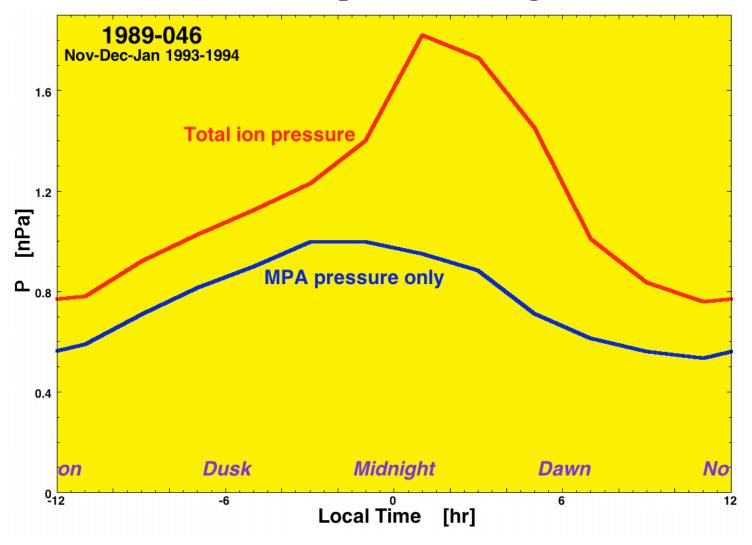
- Multiple simultaneous ion populations with multiple origins.
- Multiple simultaneous electron populations with multiple origins.

The MPA plasma instruments at geosyncrhouns orbit measure particles from 1 eV - 40 keV.

• This energy range misses a lot of the ion pressure. (Electrons, no problem.)

SOPA measurements (46 keV – 1.5 MeV) can be used to correct the MPA ion moments.

Corrections work as follows:


$$n_{total} = n_{MPA} + n_{SOPA}$$
 $P_{total} = P_{MPA} + P_{SOPA}$
 $T_{total} = P_{total} / n_{total}$

Some typical values.

Quantity	MPA value	SOPA value	Total
n	0.76 cm ⁻³	0.08 cm ⁻³	0.84 cm ⁻³
T	6900 eV	25,900 eV	8500 eV
P	0.83 nPa	0.33 nPa	1.16 nPa

SOPA Corrections to the MPA Measurements

- Correcting the pressure is more important than the density.
- The corrections are most important on the nightside.
- The corrections are more important during storms.

What the Corrections Involve

$$\mathbf{n}_{\text{total}} = \mathbf{n}_{\text{MPA}} + \mathbf{n}_{\text{SOPA}}$$

$$P_{total} = P_{MPA} + P_{SOPA}$$

The quantities n_{SOPA} and P_{SOPA} are obtained from the "Cayton fits" to SOPA measurements.

The Cayton fits are relativistic bi-Maxwellian fits to the count rates of the electrons and to the count rates of the ions. Each Maxwellian has a density and a temperature:

	Cayton Fit	n	T	Population
	Electron - Low	$3 \times 10^{-3} \text{ cm}^{-3}$	35 keV	Tail of electron plasma sheet
	Electron - High	$2 \times 10^{-4} \text{ cm}^{-3}$	170 keV	Outer electron radiation belt
\Rightarrow	Proton - Low	$7 \times 10^{-2} \text{ cm}^{-3}$	32 keV	Tail of ion plasma sheet
	Proton - High	3×10 ⁻⁶ cm ⁻³	3 MeV	Ion radiation belt

Problem:

For ions, the lowest-energy channels of SOPA are contaminated by electron counts.

To obtain good Proton-Low fits

- 1. The Cayton fitting code must be modified to better subtract the electron background.
- 2. The results must be inspected by eye.

If SOPA corrections are of strong interest for these GEM Events, Tom Cayton will make the Proton-Low fits to SOPA.