Community-Wide Project: GEM-CEDAR Modeling Challenge

For Space Environment modeling, confidence assessment of model predictions is an essential element

- **Quantitative assessment** of models’ capabilities to model storm impact on geo-space system.

- Define **physical parameters** and **metrics formats** relevant to specific space weather applications.

- Address **uncertainties** and **challenges** in model-data comparisons.

- CCMC provides support by archiving results and developing on-line interactive model validation systems, coordinate community tools development.

- Joint publications (> 20 participating models, 10 papers)

- FOCUS SO FAR: Comparison of time series from model and observation at specific locations/trajectories; extending to 2D comparison.
Status of Community-wide Project
GEM-CEDAR Modeling Challenge

• Model Validation Projects:
 o Poynting flux/Joule heating
 o Auroral oval boundaries
 o Global TEC
 o Neutral density/Satellite drag

• Role of magnetospheric drivers on IT system

• Climatology Assessment of Ionosphere/Thermosphere Models:
 (background support study)
Poynting Flux/Joule Heating

- Poynting Flux along the DMSP-15 satellite track from E (derived from measured plasma velocities) and B measurements.

- Modeled PF and Joule Heating from
 - empirical PF models
 - physics-based 3-D ionosphere models
 - ionospheric electrodynamics solvers of magnetosphere models

- Selected six storm events

Auroral Oval Boundary

• Started with equatorward boundary using DMSP energy flux data

• Trying to find consistent way to define boundary (e.g., threshold-based)

• Participating models: old Hardy, New Hardy, Ovation Prime, Weimer, coupled global MHD model with Fok ring current model, AMIE

• Correlation between auroral boundaries with
 o Poynting flux,
 o Joule heating,
 o Field-aligned currents,
 o Total electron content,
 o Auroral charging

Global TEC Study

- Started with 8 longitude sectors for 2006 Dec. event:
 - RMSE, NRMSE, and ratio of max.
 - dTEC_q = TEC – TEC_q(pre-storm)
 - Using 15 simulations from 8 IT models

- Addressed TEC modeling challenges:
 - TEC data preparation for validation study
 - Biases in TEC data
Neutral Density/Satellite Drag

- Neutral density measurement along the CHAMP orbit
- Model-data comparison using
 - Point value
 - Orbit averaged value
- Baseline removal to remove difference in quiet time reference levels among models, and to quantify variations due to storms.
- Satellite Drag at high altitude (> 600 km)
Role of Drivers

Driver-Swapping (MI Coupling) Patch-Panel Tool

- **High-Latitude Electric Potential Models**
 - empirical
 - data assimilation
 - global MHD
 - • Weimer
 - • Foster
 - • Heppner & Maynard
 - • Heelis
 - • AMIE
 - • SAM
 - • SWMF
 - • Open-GGCM
 - • LFM-MIX

- **Particle Precipitation Models**
 - empirical/analytical
 - • Fuller-Rowell & Evans
 - • Hardy et al.
 - • Ovation Prime
 - • Roble & Ridley

- **Penetration Electric Field Models**
 - global MHD
 - • SWMF
 - • Open-GGCM
 - • LFM-MIX

- **inner magnetosphere model**
 - • RCM
 - • CRCM

All drivers are converted to a common format.
The tool is called as a KAMELEON subroutine to provide values on the grid:
call kameleon (model, time, mlts, mlats, variables, values_output)

IT Models (CTIPe/TIE-GCM/GITM)
CTIPe runs with different high-latitude electric potential models

(for 2006 Dec. event: Orbit averaged density along the CHAMP orbit)

• All three CTIPe runs use the same model for auroral particle precipitation (Fuller-Rowell & Evans)
Regional TEC Study

TEC Changes during 2013 Mar. Storm
foF2 for 35 days including 2013 Mar. Storm (doy 076) at Millstone Hill

Millstone Hill (blue)

Change

Percentage change

red: foF2 – foF2_quiet(doy 075)
blue: foF2 – foF2_quiet(30-day median)
Outlook

• Focus on **Auroral Region**: a hub for GEM-CEDAR joint projects
 - boundaries
 - conductance

• New observations beyond DMSP data
 - new data comparison:
 - e.g., FUV Auroral Images (Yongliang Zhang)

• Boundaries based on different impact
 - auroral charging