Synthetic K, Index From Global Magnetohydrodynamics Daniel Welling¹, Nicholas Perlongo¹, Jennifer Gannon², Yiqun Yu³, and Aaron Ridley¹ ¹Univ. of Michigan ²U.S. Geological Survey ³Los Alamos National Laboratory

<u>ABSTRACT</u>: K_P is an important real-time indicator of geomagnetic activity as well as an important input for models that have forecasting potential. This paper describes a new, synthetic K_p index derived from the BATS-R-US global magnetohydrodynamic (MHD) model. It is obtained through virtual magnetometers that capture disturbances from global MHD currents, field-aligned currents mapped between the inner boundary of the MHD code and the ionosphere model, and Hall and Pedersen currents in the ionosphere. To validate the synthetic values, they are compared against observed K_p for several storm events. Agreement is varied but overall positive. Examples of how synthetic **K**_P and local-K values used in the derivation can be used to monitor local activity are also demonstrated.

The Importance of K_p

 K_{P} is the most established of all geomagnetic activity indexes. It is used as a quick-look indicator of geomagnetic activity and as inputs to many models, from simple empirical relations, such as the Young et al. (J. Geophys. Res., 1982) formulation for plasmasheet composition, to the more complicated Tsyganenko 1989 magnetic field model and many radiation belt codes that use the Braughtigam and Albert (J. Geophys Res., 2000) K_p-based radial diffusion coefficient. This reliance on K_D makes real time and forecasted K_{P} valuable to the space weather community.

BATS-R-US Virtual Magnetometers

fake, begins with virtual magnetometers, a BATS-R-US product that combines (1) global magnetospheric currents, (2) gap-region currents inside of the MHD inner boundary, and (3) Hall and (4) Pedersen ionospheric currents to produce the total magnetic perturbation at any arbitrary location. Details and validation can be found in Yu et al., J. Geophys. Research, 2010.

Station HAD

Synthetic K, Calculation

Calculation of $fa\mathbf{K}e_{\mathbf{p}}$ follows that of real $K_{\mathbf{p}}$ closely except for the placement of the virtual magnetometers and the choice of K-scaling factor to convert magnetic variations to local Kvalues. Latitude and K-scaling are determined through careful calibration and validation.

1) faKe, virtual magnetometers are placed at a constant magnetic latitude at even local time intervals. This yields ΔB , the perturbation of the magnetic field in the H or northern direction.

2) δB is calculated by subtracting the minimum ΔB from the maximum over a three hour floating time window.

Magnetohydrodynamic models, when coupled to ionospheric electrodynamic models, capture most of the currents that feed into magnetometer measurements and can potentially yield real time and predicted geomagnetic indexes. These values can be passed to other models to help produce selfconsistent, whole magnetosphere models that benefit both research and space weather needs. This poster introduces *fa*K*e*_P, a synthetic K_P index produced by the BATS-R-US MHD code.

Calibration and Validation

faKe, is first calibrated to determine the best latitude to place the virtual magnetometers and what K-scaling factor to use. These two values are key for ensuring good agreement with observations.

For calibration, 8 events are chosen to exercise the code during quiet, active, and very stormy conditions:

Date	Event Type	Min. Dst
Dec. 9th, 1996	CIR Event	-32
May 4th, 1998	Strong Storm Event	-205
July 15th, 2000	Bastille Day Storm	-198
August 31st, 2001	Pressure Induced Substorm	-40
April 17th, 2002	Strong Storm, Sawtooth Event	-127

3) δB is converted to K-index using a specified scaling factor. No further processing is required (e.g. removal of seasonal dependences, etc.) because of the uniform station distribution.

4) K is converted to K_{p} (planetary) by merely averaging the whole-number K values to the familiar index that is quantized by thirds.

Summary and Future Work

faKe_p is the first MHD-based synthetic K_p system. It has been calibrated to find the best combination of latitude and K-scaling factor. Comparisons against observed K_D are excellent. Future work will expand the number validation events as well as test the impact of including coupled ring current models on the calibration and overall results.

Operational Applications

fake, results can be presented as localized, real-time indicators of space weather activity. The system is ready to be used with BATS-

Station HAD

October 29th, 2003	Halloween Storm	-353
November 20th, 2003	Super Storm	-422
September 2nd, 2004	Quite Period/Isolated Substorm	-23

Two metrics are used to quantify the results: normalized root-mean-squared error (nRMSE, indicative of good agreement in magnitude) and Pearson's correlation coefficient (PCC, indicative of good agreement in dynamics).

Calibration takes place using observations from the 13 K_D stations. Both ΔB and δB values are tested to get thorough, high time resolution results.

Finally, *fa*Ke_p resulting from several different latitudes and K-scaling factors is compared against data to determine the best combination. All scaling factors are taken from official K_{P} stations.

