
To visualize the complex geometry of 
cosmic magnetic fields it is useful to 
represent the field by means of 
magnetic field lines, that is, lines that 
are every where parallel to the 
magnetic field vector.  Since dipolar 
geometry underlies many examples of 
cosmic magnetic fields, we examine 
the dipole case in this module and its 
modifications in the next module. 

Properties of Magnetic Dipoles 

[This figure will be replaced by one using  
a CCMC program after Lutz finished it.] 



Dipole Field 
Equations 

•  The equations of a dipole field in spherical polar 
coordinates (r,θ,φ) are 

•   Br = 2M cos θ/r3  (1)       
•   Bθ = M sin θ/r3  (2)      
•   Bφ = 0   (3)        
•  where M is the dipole moment, which can be positive or 

negative.  In the case of Earth, M = -8x1015 T m3 or 
-31,000 nT Re

3. It is often useful to use latitude (λ) 
instead of colatitude (θ); then the equations are 

•   Br = 2M sin λ/r3  (4)      
•   Bλ = -M cos λ/r3  (5)     
•   Bφ = 0   (6)        
•  where λ is negative in the southern hemisphere so that 

dλ = -dθ at all latitudes.  We will also find it useful to 
employ the cartesian (x,y,z) coordinate system, where x 
points sunward, z points northward and is coaxial with 
the dipole, and y completes the set.  Then we have 

•   Bx = 3M xz/r5   (7)      
•   By = 3M yz/r5   (8)      
•   Bz = M (3z2-r2)/r5   (9)       

(Dipole Axis) 

Digression on the distinction between dipole moment, M, 
used in planetology and magnetic moment, µ, used in 
plasma physics, notably the magnetic moment of a 
charged particle in a magnetic field.  µ = 4π M/µo = Mx107.  
Whereas M has the dimensions of T m3, µ has the 
dimensions of J/T.  Thus, M is more convenient when 
discussing the spatial properties of the dipole field, but µ 
is more convenient when discussing magnetic energy. 



•  The field of a dipole is both curl-free (no currents) and divergence-
free (like all magnetic fields). Therefore, there exist a scalar potential, 
Φ, and a vector potential, A, from which the field equations may be 
generated by differentiation. 

•           B = -∇Φ      (10)        
•  where 

•           Φ = M cos θ/r2      (11)    
•  and  
•   B = ∇×A      (12)   
•  where 

•   A = M sin θ/r2 φ     (13)    
•  and φ is the unit vector in the φ direction. 

Potential Form of the Dipole Field Equations 



Dipole Field Line 
Geometry 

      Integrating the field-line equation 

•   dr/Br = rdθ/Bθ  (14)       
•  gives 
•   r = L sin2θ  (15)      
•  where the integration constant, written as L by 

convention, denotes the distance at which the 
field line crosses the equator.   

•  This equation was used to plot the field lines 
in adjacent figure.  The field lines are self-
similar in the sense that normalized to their 
equatorial crossing distance, L, they have the 
same shape: 

•   η = sin2θ   (16)     
•  where η is normalized radial distance, r/L.   

•  This means that that if you expand or contract 
a dipole field line keeping its shape the same 
but moving its equatorial crossing distance 
from L to L', then it will lie on top of the dipole 
field line with L' as its equatorial crossing 
distance.  



      An interesting property of self-
similarity of dipole field lines is 
that at fixed latitude they all make 
the same angle with respect to the 
radial.  For example, at latitude 
35.3o every dipole field line 
reaches its maximum distance 
from the equatorial plane and at 
that point is parallel to the 
equatorial plane.  As a corollary, 
this means that the north-south (z) 
component of every dipole field 
changes sign at 35.3o latitude.  

Self Similarity of Dipole Field Lines 
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•  The dipole field equations (1) to (3) say 
that a dipole field is parallel to the 
radial direction over the poles and 
perpendicular to the radial direction on 
the equator.  It is twice as strong at the 
pole as at the equator at a fixed radial 
distance.  At any latitude, the field 
strength decreases with radial distance 
as 1/r3.  The following equation makes 
explicit the dependence of field 
strength on distance and latitude. 

•   B =| M| (1+3cos2θ)1/2/r3         (17)  

•  The latitude dependence of field 
strength is plotted in the figure.  

Dipole Field Strength 



•  Right at the pole a dipole field is parallel (or 
antiparallel) to the radial direction and right 
on the equator a dipole field is 
perpendicular to the radial direction.  At 
other latitudes the angle between the radial 
direction and the magnetic field of a dipole 
(the complement of the inclination of the 
field) is given by  

•  α(θ) = cos-1(2 cos θ/(1+3 cos2θ)1/2)      (18)      
•  This angle is plotted in the adjacent figure, 

from which we see that α(0)=0o and 
α(90)=90o as claimed.  

Field Line Inclination 



• Around the pole (θ = 0) the behavior of α(θ) is 
nearly linear.  To determine the linear 
coefficient at the pole, we differentiate 

•  dα/dθ = 2/(1+3 cos2θ)        (19)      
• which when evaluated at θ = 0 gives dα/dθ = ½.  

That is, around the pole the angle, α, between 
a dipole field line and the vertical direction is 
about half the polar angular, θ. 

The Polar Region 
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•  1. Verify that potentials (11) and (13) yield the dipole equations (1) to (3). 
•  2. Verify the field-line equation (15). 
 3. Verify that at latitude 35.3o every dipole field line reaches its  

 maximum distance from the equatorial plane.  
4. Verify the field-strength equation (17) 
5. Verify equation (18) for the angle between the vertical direction and  
 the magnetic field at colatitude θ.  (Hint: The dot product between  
 a unit radial vector and a unit vector in the direction of the  
 magnetic field is the cosine of the desired angle.) 

 6. Show that for a dipole field line with equatorial crossing distance L,  
 the radius of curvature* of at the equator is L/3.  (Note that this is  
 1/3 the radius of curvature of a geocentric circle of radius L). 

 *For a function of the form r(θ) = f(θ), the radius of curvature, Rc, is  
 given by 

Rc=(r2+r’2)3/2/(r2+2r’2-rr’’) 

  where primes denote differentiation with respect to θ.  Evaluate all  
 terms at the equator, θ=90o. 

Exercises 


