Uncertainty Analysis of Model Output

R.W. Schunk

Center for Atmospheric & Space Sciences Utah State University Logan, Utah

> Presented at: 2011 CEDAR - GEM Workshop Santa Fe, New Mexico

Outline

- 1. Problems with Physics –Based Models
- 2. Uncertainty Analysis: Formal Procedure
- 3. Determining Uncertain Parameters
- 4. Ensemble Modeling

1. Problems with Physics-Based Models

- Relatively Simple Math Formulations
 Diffusion, MHD, etc.
- Uncertain Parameters

Chemical Rates, Collision Freq., etc.

• Incomplete or Approximate Coupling

Kinetic & Fluid Formulations

- Spatial & Temporal Resolutions are Coarse
- Missing Physics

Photoionization

 $\lambda < 796$ Å F-region $\lambda \sim 796 - 1027$ Å E-region

Ion Chemistry PROTONOSPHERE He⁺, H⁺ 900 800 700 ALTITUDE (km) TOPSIDE IONOSPHERE 600 IONOSPHERE 500 400 O^+ 300 – F2 200 F1 E 0₂+,N₂+,NO+ 100 D 0 10^{4} 105 106 10^{3} ELECTRON DENSITY (cm⁻³)

F-Region

Topside

 $O+hv \rightarrow O^++e^*$

 $O^++N_2 \rightarrow NO^++N$ $O^++O_2 \rightarrow O_2^++O$

 $O^++H \Leftrightarrow H^++O$

 $He^{+} + N_{2} \longrightarrow N^{+} + N + He$ $He^{+} + N_{2} \longrightarrow N_{2}^{+} + He$ $He^{+} + O_{2} \longrightarrow O^{+} + O + He$

$$N_{2}^{+} + O_{2} \longrightarrow O_{2}^{+} + N_{2}$$
$$N_{2}^{+} + O \longrightarrow O^{+} + N_{2}$$
$$N_{2}^{+} + O \longrightarrow NO^{+} + N$$

Recombination

$$NO^{+} + e \rightarrow N + O$$

$$O_{2}^{+} + e \rightarrow O + O$$

$$N_{2}^{+} + e \rightarrow N + N$$
 (fast process)

not important for density calculation $\begin{cases} O^+ + e \implies O + h\nu \\ N^+ + e \implies N + h\nu \\ He^+ + e \implies He + h\nu \end{cases}$

radiative recombination (slow process)

6

O⁺ - O Collision Frequency (Factor of 2 – Factor of 1)

% difference, 0° E, Solar Minimum, December, Low Kp Jenniges et al (2010)

Downward Electron Heat Flow

David et al (2010)

2. Uncertainty Analysis: Formal Procedure

- List all Chemical Rates, Collision Freq., etc., with Uncertainties
- List Physics not Included in the Model and Estimate Effect
- Conduct two Simulations => One with Lower end of Uncertainties and
- onewith Upper end of Uncertainties
(including missing physics
estimates and
different spatial resolutions)
- Spread in Output is the Uncertainty

3. Determining Uncertain Parameters in IFM

- IFM TEC Compared to TOPEX TEC
- TOPEX Measures Vertical TEC Over Oceans (1340 km)
- 10 Year TOPEX Data Base (1992-2003)
- **18-Sec Averaged Data = 11 Million TEC Values**
- Comparisons Covered Different Seasonal, Solar Cycle, and Magnetic Activity Conditions
- Uncertain Parameters in the IFM Adjusted to Bring IFM into Better Agreement with TOPEX TEC
- Also Compared to 10-year Ionosonde Dataset

IFM Parameters Adjusted

- O⁺ O Collision Frequency
- Secondary Electron Production
- Zonal Neutral Wind
- Equatorial Electrical Field

Order of Adjustment is Important

O⁺ - O Collision Frequency Adjustment

- Mid-latitudes
- 0° Declination
- Quiet Conditions
- Sunset N_mF₂ Decay verses Ionosonde Data

Example of E-Field Adjustment

- TEC in the equatorial region at night was typically too low when compared to the TOPEX data
- At times and in places the IFM could be too low by 5 -10 TECU
- This problem has been corrected and extensive

tests have been conducted for a widerange ofsolar, seasonal, and geomagnetic activity

Original IFM, low F10.7, low Kp, color scale 0-60

Improved IFM, low F10.7, low Kp, color scale 0-60

4-Wave Signature Added

How Well Do Coupled Models Simulate Today's Climate? By T. Reichler and J. Kim AMS Article

- Output from 3 different climate models
- Using equal weights, the multi-model mean usually outperforms any single model
- The use of multi-model ensembles is a common practice in weather and short-term climate forecasting