

Ensemble Assimilation Using First-Principles Models A Tool for Three-Day Space Weather Forecasts

CEDAR, 2015

Thursday, June 25th, 2015

M. Pilinski¹, G. Crowley¹, J. Wolfe¹, T. Fuller-Rowell², T. Matsuo², S. Solomon³, L. Qian³, J. Thayer⁴, M. Codrescu⁵ ¹ASTRA LLC., ²CIRES. ³UCAR, ⁴U. of Colorado, ⁵NOAA

Motivation for Neutral Density and Satellite Drag Specification

Applications Bringing It All Together

Satellite drag errors degrade capability to:

• Maintain accurate catalog of all space objects

Science

- Predict and avoid space collisions
- Predict satellite reentry time & location

Altitude Regimes of Satellite Drag

Science
Technology
Applications
Bringing It All Together

9/8/15

Satellite Drag and Neutral Densities Relative importance of various scales

What physical processes are important?

24 Hour Orbital In-Track Error at 400km

Develop an ensemble assimilative neutral density model

- AF requirement for better satellite drag specification and forecast: improve specification beyond JB08 and HASDM
- Provide a modeling tool that outperforms current AF capabilities
- Consists of ensemble of world-class first-principles well-validated IT models
- Assimilative

Options for additional inputs

Science
Technology
Applications
Bringing It All Together

Assimilated Data Types

Data Type	Assimilation Time Span	Notes
Orbit Average Drag i.e. Calspheres, DANDE, POPACS	6-72 h	Infer observed energy dissipation rate (EDR) from general perturbations (TLEs) or special perturbations (high task tracking data). Select 30-90 objects with stable ballistic coefficients.
HASDM Densities	6h	EDR is inferred from HASDM density outputs
Orbit Average Densities	24 hours	Already processed high-task tracking data
Orbit Resolved Drag: GPS	15-30 min	Observed EDR from special perturbations and GPS measurements
Orbit Resolved Drag: accelerometers (Swarm)	15 min	Observed acceleration at 10-45 sec cadence (in-track and cross-track), binned to 15 min
O/N2 (GOLD)	30 min	Dayside disk composition
Mass Spectrometer	10-30 sec	In-situ day and night composition

Test	t-data	cove	rage	AND I WE	♦Science ♦ Tec	hnology � Applications Bringing	g It All Together	ASTR
min	alt [km]:	190	250	300	400	500	600	700
max alt [km]:		250	300	400	500	600	700	900
nclination ranges [deg]	20-30	1		4				
	30-40	1	1	1		2		
	40-50		1					
	50-60	1			1			
	60-70				1			
	70-80			2				2
	80-100	1	1	14	2	2		1
—	SUM:	4	3	21	4	4	0	3

VANGUARD II

DFH-I

DANDE

RIGIDSPHERE 2

Time-series of model and measured densities along the CHAMP satellite track. Various models are represented above showing the improvement in the representation of high latitude density features when using AMIE. It is also seen that TIME-GCM with AMIE outperforms the empirical models.

9/8/15

Lower boundary parameter assimilation: 2004 to 2007

Science
Technology
Applications
Bringing It All Together

9/8/15

- New state-of-the-art assimilative model of the atmosphere is being developed to include many of the lessons learned from NADIR MURI
- Improve over operational drag-specification models
- Includes altitudes up to and above 1000km
- Future plans to make outputs commercially available to civilian customers

- Dynamically tuned models result in optimum background atmospheric state
- Multiple model (super-ensemble) approach allows for graceful degradation in case of inputstream or model interruption
- Inclusion of TIME-GCM allows for specification of densities in the re-entry regime, down to 30km
- Inclusion of Helium in several models allows for drag computation up to 1000km

Testing with Orbit Average data

- TLE's are being used as a stand in for orbital arcs analysis
 - Cadence and arc length is a conservative stand-in for the special-perturbations approach available operationally to the customer
 - Transition to 6-hour arcs from special perturbations analysis in Phase III
 Conjunction of four calibration objects
- TLE's provide some of the same sampling characteristics and measurement parameters as the special-perturbations approach
- Drawbacks
 - Lower signal-to-noise
 - Latency (~1 day)

72h Forecast
9/8/15RMSE lower than JB08 in forecast
modeRMSE better than HASDM in
forecast mode19

Phase I Accomplishments: storm response

Science
Technology
Applications
Bringing It All Together

Phase I Accomplishments: seasonal effects and tuning

*Science
* Technology
* Applications
Bringing It All Together

Model-data comparisons of global-mean neutral density at 400 km. Black: neutral density derived from drag data of more than 5000 orbiting objects [Emmert, 2009]; Red: TIE-GCM simulated neutral density. (a): model-data comparisons when the default constant eddy diffusion was imposed at the model lower boundary; (b): model-data comparisons when the variable eddy diffusion was imposed at the model lower boundary.

What is Satellite Drag? Relative importance of various scales

Ace * Technology * Applications Bringing It All Together

Science

- Large scale perturbations can be misrepresented in empirical models
- It takes long-wavelength perturbations to cause significant position errors
- 3U sun-pointing CubeSat $\frac{C_D A}{m} \approx 0.02 \quad \left[\text{m}^2/\text{kg} \right]$
- 100m errors are considered "significant" by USAF at 400 km altitude [Anderson et al. 2008]

Lower Boundary Forcing (Dynamic Tuning) – to backup

*Science

Technology
Applications
Bringing It All Together

- Example of dynamically tuned eddy diffusion coefficient
- Our approach combines dynamic calibration/tuning with assimilation

81-day Modeled and Measured Density

Realtime Ensemble Tests

Science
Technology
Applications
Bringing It All Together

