SAM13/RCM SIMULATION STUDY OF THE MARCH 31, 2001 STORM

J.D. Huba
Plasma Physics Division
Naval Research Laboratory
Washington, DC 20375

2014 CEDAR Workshop
Seattle, WA
June, 2014

with S. Sazykin (Rice University)

supported by NRL Base Funds and NASA LWS grants
\[\nabla \cdot \Sigma \nabla \Phi = S(V_n, J_\parallel) \]

- penetration electric field
 - \(S(V_n, J_\parallel(t)) \)
 - time scale: mins
- stormtime dynamo electric field
 - \(S(V_n(t), J_\parallel) \)
 - time scale: hrs
PENETRATION ELECTRIC FIELD
stormtime impact on ionosphere (Mannucci et al., GRL, 2005)
\[\nabla \cdot \sum_{\text{SAMi3}} \nabla \Phi = S \left(V_n, \left\{ \frac{J_{\parallel}}{\text{HWM}}, \frac{J_{\parallel}}{\text{RCM}} \right\} \right) \]
PLASMASPHERE DYNAMICS

stormtime response (Grebowsky, JGR, 1970)
H$^+$/He$^+$ CONTOURS

(Huba and Krall, GRL, 2013)
Electron Number Density (cm$^{-3}$)

$\log_{10} n_e = -0.66L + 4.89$
IONOSPHERE/PLASMASPHERE SIGNATURES

GPS TEC [10,150] TECu 19:30 UT March 31, 2001

Equatorial Projection

19:30 UT TEC > 50 TECu
march 29, 2001 storm - impact on TEC and electron density profile
SUMMARY

- quiet time: plasmasphere just an extension of ionosphere (reasonably well-modeled by SAMI3/Weimer)
- stormtime: high latitude dynamics become important
 - penetration electric field
 - disturbance dynamo electric field
- effects
 - erosion of plasmasphere/plume development
 - stormtime enhanced density (SED) in mid- to high-latitude ionosphere
- some fundamental stormtime dynamics confirmed using SAMI3/RCM: relationship of SED and plume