GITM Results for December 2006 and August 2001

Using Different Drivers

Plot Intro – Mass Density Raw

Plot Intro – [e-] Density Raw

Plot Intro – Mass Density Averaged

Plot Intro – [e-] Density Averaged

Plot Intro – Mass Density Ascending

Local Time: 1.15

Plot Intro – Mass Density Descending

Local Time : 13.15

Electron Density - Ascending

Local Time: 1.15

Aug 29 to 31, 2001 Universal Time

Electron Density - Descending

2.0·10¹²(⁽¹¹⁾ 1.5·10¹² 1.5·10¹² 1.0·10¹² 5.0·10¹¹ 5.0·10¹¹ 50 Latitude (deg) 0 -50 0 30 31 2.0·10¹²,²¹01·0.2 1.5·10¹² 1.0·10¹² 1.0·10¹² 5.0·10¹¹ 5.0·10¹¹ 50 Latitude (deg) 0 -50

30 31 Aug 29 to 31, 2001 Universal Time

Runs

- December 2012 (2.5 deg x 5 deg)
 - Photoelectron efficiency of 12%
 - Weimer, SWMF, Astra AMIE
 - Photoelectron efficiency of 12% + less more efficient auroral energy deposition
 - Weimer, SWMF, Astra AMIE
 - Photoelectron efficiency of 6%
 - Weimer, SWMF, Astra AMIE
- August 2001
 - Photoelectron efficiency of 6% (2.5 deg x 5 deg)
 - Weimer, SWMF
 - Photoelectron efficiency of 4% (1.875 deg x 5 deg)
 - Weimer, SWMF

August Mass Density

Weimer Driven

Weimer Driven w/ Higher Res and slightly lower photoelectron heating

August Mass Density

Weimer Driven

SWMF Driven w/ Higher Res and slightly lower photoelectron heating

December Mass Density

Weimer Driven

SWMF Driven

December Mass Density

Weimer Driven

Astra AMIE Driven

Weimer Driven

SWMF Driven

Weimer Driven

Astra AMIE Driven

Weimer Driven

SWMF Driven

Weimer Driven

Astra AMIE Driven

Conclusions

- For both events a photoelectron heating rate of about 4% would be optimal.
 - All of the December 2006 runs were done with 6%
- August 2001
 - SWMF with high resolution (1.875 deg latitude) performed best for mass density
- December 2006
 - No model performed really well during the storm
 - Weimer under predicted the mass density dramatically
 - SWMF under predicted the mass density a bit, but had the best results of the three
 - AMIE produced by ASTRA produced an extremely large perturbation in the mass density and over predicted it.
 - For electron densities, all three produced similar errors in the equatorial region (although there were both qualitative and quantitative differences in the results)