Conjunction Assessment Risk Analysis

Conjunction Assessment Late-Notice High-Interest Event Investigation:

Space Weather Aspects

D. Pachura, M. D. Hejduk 27 Sep 2016

Background: Conjunction Assessment

- Conjunction Assessment Risk Analysis (CARA)
 - Evaluates collision risk between two satellites expected to come in close proximity of each other (by calculating probability of collision [Pc])
 - Mitigates collision risk, if necessary

- Conjunctions usually identified several days before close approach
 - Risk usually follows more-or-less canonical development paradigm
- However, sometimes risk increases or decreases quite suddenly
 - More insight needed into the circumstances behind such cases

- Tasked to analyze short notice events which are generally a result of unexpected, large state changes
- Looked at all reported conjunctions for *ca.* 700 km protected missions from May 2015 though Feb 2016
- Performed an analysis to determine whether there is any correlation between large state changes/late notice event identification and the following factors:
 - Sparse tracking
 - High drag objects
 - Space weather
- Examined specific late notice events identified by missions to try to identify root cause

Broad Investigation of Large State Changes

- Late-notice events usually driven by large changes in primary (protected) object or secondary object state
- Main parameter to represent size of state change is component position difference divided by associated standard deviation (ε/σ) from covariance
- Investigation determined actual frequency of large state changes, in both individual and combined states
 - Compared them to theoretically expected frequencies
- Found that large changes ($\epsilon/\sigma > 3$) in individual object states occur much more frequently than theory dictates

– Effect less pronounced in radial components and in events with Pc > 1e-5

- Found combined state matched much closer to theoretical expectation, especially for radial and cross-track
 - In-track is expected to be the most vulnerable to modeling errors, so not surprising that non-compliance largest in this component

Summary of "Other" Correlation Results

- Pc correlation with large state changes in primary not very strong
- Large state changes in the secondary do correlate to large changes in Pc, but not all that strongly
 - Value of Kendall's Tau ranged from 0.37 to 0.6
- Sparse tracking for secondary does not correlate with large state errors
- Higher EDR values for secondary do not correlate with larger state errors

- Elevated levels of solar activity can produce an unstable atmosphere whose density is difficult to model
 - More strongly true with geomagnetic storms (Dst, a_p)
 - Can also be observed with EUV (F10, M10, S10, Y10, &c.)

Different possibilities for essence of the problem

- Higher solar activity *simpliciter*
- Mismatch between predicted and realized solar activity

Will investigate the former with correlation studies

- Median F10 and a_p over prediction interval
- Peak a_p over prediction interval
- Will investigate the latter with case studies

Combined ϵ/σ vs Median F₁₀: Any Component abs(ϵ/σ) > 3

Combined ε/σ vs Solar Indices: Tabular Summary

	Radial	In-Track	Cx-Track	Chi-Sq	
Median F10: Kendall					
All Data	0.008	0.01	0.006	0.02	
ε/σ>3	0.01	0.001	0.07	0.01	
ε/σ>5	-0.03	-0.05	-0.09	-0.05	
Median Ap: Kendall					
All Data	0.02	-0.0001	0.02	0.02	
ε/σ>3	-0.05	-0.01	0.06	-0.04	
ε/σ > 5	-0.003	-0.003	0.03	0.01	
Peak Ap: Kendall					
All Data	0.03	0.009	0.03	0.04	
ε/σ>3	-0.04	-0.01	0.03	-0.04	
ε/σ>5	-0.04	-0.01	-0.02	-0.04	

• Correlations are essentially nonexistent in all areas

Simple elevated levels of solar activity do not correlate with large changes in relative miss

Late-Notice HIE Case Studies

- Examined four late-notice events that fell within data investigation period of current study
 - -1 MAY 2015 to 1 FEB 2016
- Events examined
 - Terra vs 38192, TCA 24 JUN 201
 - Aura vs 89477; TCA 29 AUG 2015
 - Terra vs 37131; TCA 19 DEC 2015
 - GPM vs 28685; TCA 5 SEP 2015
 - Determined not to be space weather related

• Will look at

- $-\epsilon/\sigma$ vs time (same as Δ position to uncertainty plots from daily/HIE report, like at right)
- Pc vs time (same as from daily/HIE report)
- Dst and a_p ; prediction vs actual
 - Segmented by what is available in support of each update

JSpOC Space Weather Information Files

- JSpOC uses JBH09
 - JB08 + HASDM
 - Anemomilos DST prediction
- Updated at JSpOC 3x per day

Model Input summary:

- S10, S54 are daily and 54-day S10.7 index for >200 km heating of O by solar chromosphere 28.4-30.4 nm emissions in x10-22 Watts per meter squared per Hertz
- M10, M54 are daily and 54-day M10.7 index for 100-110 km heating of O2 by solar photosphere 160 nm SRC emissions in x10-22 Watts per meter squared per Hertz
- Y10, Y54 are daily and 54-day Y10.7 index for 85-90 km heating of N2, O2, H2O, NO by solar coronal 0.1-0.8 nm and Lya 121 nm emissions in x10-22 Watts per meter squared per Hertz
- F10, F54 are daily and 54-day solar 10.7 cm radio flux in x10-22 Watts per meter squared per Hertz
- $-a_p$ is the 3-hour planetary geomagnetic 2 nT index (00-21 UT)
- Dst is Disturbance Storm Time geomagnetic index in nT
- DTC is delta exospheric temperature correction in units of K

Space Weather Evolution Charts

- Upper left shows Dst; lower left shows a_p
- Black line is "issued" (definitive) data
- Colored lines are predicted data
 - Each line begins when a given OD update executed
 - Each line shows predicted values of the geomagnetic index of choice
 - When Dst lines move to small positive value, prediction stops (zeroes in file)
 - When a_p lines move to small negative value, prediction stops (ones in file)
- Dst threshold for solar storm compensation engagement also shown
- Upper right shows ϵ/σ for each component
 - Miss distance vs combined covariance
- Lower right shows Pc vs time

Case Study #1: Terra vs 38192, TCA 24 JUN 2015

Space Weather Trade-Space Result: 61 Hours to TCA

- About half a day before spike in a_p/Dst begins
 - Some predicted increased Dst activity, but not of severity actually realized
 - Predictions at very end of storm over-predict Dst
 - Final prediction and shrinking covariance produces Pc drop off
- SWTS indicates conjunction vulnerable to large Pc changes due to density mis-modeling
- Bottom line: missed solar storm and subsequent prediction failures produced late changes

Primary Drag Scale Factor

Case Study #2: Aura vs 89477; TCA 29 AUG 2015

Space Weather Trade-Space Result: Aura vs 89477; 56 Hours to TCA

- Run from update right as spike in a_p/Dst is beginning
 - No predicted spike in relevant ASW space weather file
- Indicates that conjunction vulnerable to large Pc changes due to atmospheric mismodeling
- Bottom line: space weather predictions missed significant solar storm
 - Most likely cause of late-breaking change in Pc

Case Study #3: Terra vs 37131; TCA 19 DEC 2015

Space Weather Trade-Space Result: Terra vs 37131; 28 Hours to TCA

- Run from update before 2 OoM change in Pc observed
 - Strange actual behavior in Dst
 - Modest unmodeled increase in Ap
- SWTS indicates that conjunction vulnerable to Pc changes due to atmospheric mis-modeling

 Bottom line: odd space weather behavior, and deviation from predication, probably responsible for modest increase in Pc

Late-Breaking HIEs: Overall Summary

- Large state changes occur more often than theory would indicate
- Do not correlate at global level with any obvious causal condition
 - Light tracking, hard-to-maintain orbits, or generally elevated solar activity

Case studies indicate two culprits

- Failure of JSpOC space weather predicted indices to predict solar storms
- Edge cases for general screenings

Is there any good news?

– No, not really

- CARA has begun receiving atmospheric model input data from JSpOC
 - Gives CARA analysts insight into what is being modeled
 - CARA analysts can work with outside experts (SWRC) to evaluate reasonableness and likelihood of predicted space weather events
- CARA analysts can use model input information and outside evaluation of predictions to provided more nuanced feedback as to when to expect increased uncertainty and variation due to space weather
 - Additionally, as shown by this study, it is a great help for post-event analysis
- Developing operational ConOps for how and when to apply space weather trade space with model insight

BACKUP SLIDES

N. Sabey | ERB | 18 Jun 2013 | 20

JSpOC Space Weather Information Files: Data Currency

Three types of data in file

- "Issued" definitive values for the solar/geomagnetic index, subjected to full availability of feeder data and consistency tests
- "Nowcast" initial observations of values, hand-scaled and not subject to consistency tests
 - Measurements stay in "nowcast" status for typically 24 hours
- "Predicted" values are predicted
 - EUV predicted values from 54- and sometimes 108-day autoregression analyses of past data
 - Geomagnetic indices are predicted from observed solar activity earlier in the solar rotation (and thus expected to become georelevant at a given future time)

Data type timing

- Issued/Nowcast data used in propagating states from epoch to current time
 - Scaled/debiased with HASDM results
- Predicted data used in propagating states from current time to TCA
- Accuracy of predicted data can influence propagated result substantially

 Let q and r be vectors of values that conform to a Gaussian distribution

– These collection of values are called *normal deviates*

 A normal deviate set can be transformed to a standard normal deviate by subtracting the mean and dividing by the standard deviation

– This produces the so-called Z-variables

$$Z_q = \frac{q - \mu_q}{\sigma_q} , \quad Z_r = \frac{q - \mu_r}{\sigma_r}$$

 The sum of the squares of a series of standard normal deviates produces a chi-squared distribution, with the number of degrees of freedom equal to the number of series combined

$$Z_q^2 + Z_r^2 = \chi_{2dof}^2$$

 In a state estimate, the errors in each component (u, v, and w here) are expected to follow a Gaussian distribution

- If all systematic errors have been solved for, only random error should remain

- These errors can be standardized to the Z-formulation
 - Mean presumed to be zero (OD should produce unbiased results), so no need for explicit subtraction of mean

$$Z_u = \frac{u}{\sigma_u}, \quad Z_v = \frac{v}{\sigma_v}, \quad Z_w = \frac{w}{\sigma_w}$$

 Sum of squares of these standardized errors should follow a chisquared distribution with three degrees of freedom

$$Z_{u}^{2} + Z_{v}^{2} + Z_{w}^{2} = \chi_{3\,dof}^{2}$$

- Let us presume we have a precision ephemeris, state estimate, and covariance about the state estimate
 - For the present, further presume covariance aligns perfectly with uvw frame (no off-diagonal terms)
- Error vector ε is position difference between state estimate and precision ephemeris, and covariance consists only of variances along the diagonal

- Inverse of covariance matrix is straightforward

$$\varepsilon = \begin{bmatrix} \varepsilon_{u} \\ \varepsilon_{v} \\ \varepsilon_{w} \end{bmatrix}, \quad C = \begin{bmatrix} \sigma_{u}^{2} & 0 & 0 \\ 0 & \sigma_{v}^{2} & 0 \\ 0 & 0 & \sigma_{w}^{2} \end{bmatrix} \qquad \qquad C^{-1} = \begin{bmatrix} 1/\sigma_{u}^{2} & 0 & 0 \\ 0 & 1/\sigma_{v}^{2} & 0 \\ 0 & 0 & 1/\sigma_{w}^{2} \end{bmatrix}$$

Resultant simple formula for chi-squared variables

$$\varepsilon C^{-1} \varepsilon^{T} = \frac{\varepsilon_{u}^{2}}{\sigma_{u}^{2}} + \frac{\varepsilon_{v}^{2}}{\sigma_{v}^{2}} + \frac{\varepsilon_{u}^{2}}{\sigma_{w}^{2}} = \chi_{3\,dof}^{2}$$

Extension to case with off-diagonal terms straightforward
Pachura/Hejduk | Late-Notice HIEs | 27 SEP 2016 | 24

- Evaluates the degree of a linear relationship between two variables
- Usually evaluated by the formula (s is sample standard deviation), with range of interesting and often not helpful outcomes

 Some interpretive guidance via relationship to r² value from linear regression: square of Pearson = regression r²

– Pearson value of 0.5 would equate to r^2 of 0.25—not very impressive

Really would like something that reveals even non-linear correlation

Kendall's Tau

Rank correlation test

- With two vectors of data X and Y, compares (Xi,Yi) to every other (Xj,Yj)
- Pair is concordant if, when Xi>Xj, Yi>Yj; discordant if the opposite
- Parameter is (# concordant pairs # discordant pairs) / (total pairs)
 - So same range of values (-1 to 1) with same meaning

Much more robust test

- Will find both linear and nonlinear correlation
- Computationally expensive [$\sim O(n^2)$], but computers are doing the work

Tied situations create problems

- In present analysis, arises when comparing continuous to discrete distribution
 - *e.g.*, ϵ/σ to tracking levels (because tracking levels are counting numbers, so can have multiple ϵ/σ values aligned with same tracking level)
- Even more computationally expensive modifications to adjust for ties
- Spot-checked these and saw no difference in computed result

Spearman's Rho

 Test of monotonicity, computed by summing squares of differences in rank

- Mapped into same -1 to 1 range of values, with same interpretation

Computational formula

- Computationally easier but more vulnerable to outlier data
- Usually larger than Kendall's tau
- Included here for consistency/contrast

Main factor to consult is Kendall's Tau

Broad Investigation of Large State Changes

 Determine actual frequency of large state changes, in both individual and combined states

- Compare to theoretically expected frequencies

Determine whether broadly correlated with potential/expected causes

- Low tracking
- Harder-to-maintain orbits (larger energy dissipation rate)
- General levels of solar activity (EUV and Joule atmospheric heating)

Large State Changes: Parameterization (1 of 3)

- Main parameter to represent size of state change is component position difference divided by associated standard deviation (ϵ/σ)
 - Presumption of OD is that errors are normally distributed and unbiased
 - $-\epsilon$ is difference in component position between subsequent state estimates
 - $-\,\sigma$ is square root of associated variance from first state's covariance
 - Dividing ε by σ creates standardized normal variable (μ =0 because unbiased)
 - Set of these should thus conform to standard normal distribution

Same method currently used in CARA daily and HIE reports

Large State Changes: Parameterization (2 of 3)

- However . . . This is only true for the "diagonalized" situation, in which covariance axes and coordinate frame axes align
 - Results meaningful only if ellipse closely aligns with coordinate axes
 - Once ellipse rotated, then component errors are correlated
 - Individual component error distributions no longer independent random variables
- How often are covariance error ellipsoids naturally diagonalized?
 - Not terrible assumption for individual satellites (primary, secondary)
 - More tenuous for combined situation (miss distance vs combined covariance)
- Bottom line: ϵ/σ statistics at the component level must be used with care
 - When plotted against only positive axis, presume ϵ/σ to be $abs(\epsilon/\sigma)$

Large State Changes: Parameterization (3 of 3)

Comparison alternative: Mahalanobis distance

- If individual component errors normally distributed, then sum of squares of individual ratios (ϵ^2/σ^2) will constitute a 3-DoF χ^2 distribution
- Formulary $\epsilon C^{-1} \epsilon^T$ properly considers all correlations and makes the calculation independent of coordinate system
- Approach less frequently encountered, so less intuition built up around result
- But will be supplied and examined along with Gaussian variables
- Can also examine 2-DoF situation for only radial and in-track
 - More information on this later

Frequency of Large State Changes: Secondary Objects

Frequency of Large State Changes: Primary Objects

Pachura/Hejduk | Late-Notice HIEs | 27 SEP 2016 | 33

Summary of Frequencies: Primary and Secondary Objects

- Data summary
 - Table below reports situation for which $abs(\epsilon/\sigma) > 3$
- Commonly-known theoretical "percentages" for univariate Gaussian distribution consider two-tailed results
 - $-\,95.4\%$ for 2- σ distribution considers results from 2.3% to 97.7%
 - $-\,99.7\%$ for 3- σ distribution considers results from 0.15% to 99.85%
- Actual percentages for primaries surprisingly large
 - Very similar for radial component; much larger differences with other two
 - Perhaps a little comfort in this, as radial generally most important component for CA

	Percent of Events in which $abs(\epsilon/\sigma)$ exceeds 3								
	Overall		Event Pc > 1E-05		> 1E-05 & ∆	Pc>100M	> 1E-05 & ∆Pc > 2 OoM		
	Primary	Secondary	Primary	Secondary	Primary	Secondary	Primary	Secondary	
Radial	1.57	1.33	0.37	0.30	0.09	0.08	0.08	0.06	
In-Track	5.88	3.31	1.00	0.41	0.26	0.16	0.23	0.15	
Cross-Track	13.53	7.10	2.64	0.88	0.34	0.13	0.22	0.09	

Overall, prevalence is greater than theory would predict. However, presence in events of significance notably reduced

Comparison of ε/σ to Theory: Primary and Secondary Objects

Comparison of ε/σ to Theory: Interpretation

 Radial behaves reasonably well—better than theory until more extreme part of tails reached

- Cannot see tail behavior very well in provided plots

- In-track has non-theoretical distribution beyond about $\epsilon/\sigma > 1$
 - As remarked previously, worse for secondaries than for primaries
- Cross-track highly leptokurtic—peaked with very long tails
 - Does not match a Gaussian distribution at all
- In using chi-squared distribution, 2-DoF framework gives more sanguine situation
 - Eliminates effect of large cross-track differences
 - Nonetheless, non-theory outliers dominate performance in the tails
- None of these results sets match the theory particularly well
- Immediate conclusion difficult
 - OD residuals suspected to be leptokurtic
 - Present trend could be extension of this

Combined Situation

STATE-CHANGE FREQUENCY AND COMPARISON TO THEORY

Pachura/Hejduk | Late-Notice HIEs | 27 SEP 2016 | 37

Frequency of Large State Changes: Miss vs Combined Sigma

Pachura/Hejduk | Late-Notice HIEs | 27 SEP 2016 | 38

Comparison of ϵ/σ to Theory: Miss Component vs Combined Sigma

Frequency of Large State Changes: Tabular Summary

	Percent of Events in which $abs(\epsilon/\sigma)$ exceeds 3											
	Overall		Event Pc > 1E-05		> 1E-05 & ΔPc > 1 Oo M			> 1E-05 & ΔPc > 2 Oo M				
	Primary	Secondary	Combined	Primary	Secondary	Combined	Primary	Secondary	Combined	Primary	Secondary	Combined
Radial	1.57	1.33	0.85	0.37	0.30	0.19	0.09	0.08	0.06	0.08	0.06	0.05
In-Track	5.88	3.31	2.54	1.00	0.41	0.74	0.26	0.16	0.16	0.23	0.15	0.13
Cross-Track	13.53	7.10	0.90	2.64	0.88	0.10	0.34	0.13	0.04	0.22	0.09	0.03

 Values much closer to theoretical expectation, especially for radial and cross-track

 In-track is expected to be the most vulnerable to modeling errors, so not surprising that non-compliance largest in this component

Combined ϵ/σ vs Median F₁₀: All Data

Combined ϵ/σ vs Median F₁₀: Any Component $abs(\epsilon/\sigma) > 5$

- Commonly-known "percentages" for univariate Gaussian distribution consider two-tailed results
 - $-\,95.4\%$ for 2- σ distribution considers results from 2.3% to 97.7%
 - $-\,99.7\%$ for 3- σ distribution considers results from 0.15% to 99.85%

Potential double-counting of large state changes

- Subsequent updates analyzed for large state change behavior
- In a chain of updates, return to normalcy will appear as a second large change
- Demarcation between one and two events not so easy to define
 - (S = small state change; L = large state change
 - S S L L S S one or two events?
 - S S S L S S L S S one or two events?
 - S S S S S S L one or two events (would it have been counted as two if one more update had been available?
- For data-mining simplicity, all large changes counted, with the caveat that reported number might be twice as large as "actual" number

- CARA member of NASA LWS space weather expert panel
 - Dr. Matt Hejduk as CA expert panel representative
 - Dr. Yihua Zheng as GSFC space physics representative, also representing mission interests
- Purpose of panel to recommend NASA research investments to improve prediction and modeling
 - Will issue formal report of recommendations by December, as well as accompanying journal article
 - Will attempt to focus at least part of recommendation to address JSpOC situation
- Hope to leverage report to push state of the art at JSpOC
 - However, from their perspective, a large investment was just made in atmospheric density prediction modeling; need to focus on other items

• Will investigate whether file update frequency can be accelerated

- Brief JSpOC on these results to show the problems that latencies create
 - See if there are mechanisms to improve efficiencies
- Use SWTS function to determine whether such intervention is needed
 - Events that are not vulnerable to atmospheric density mismodeling would not require out-of-cycle updates
- Would not have helped cases investigated here, as entire solar storms were missed
- However, probably a fairly long time before there is much improvement with such scenarios

