
ASSESSMENT OF SEP IMPACT FOR HUMAN
EXPLORATION
NASA Space Exploration and Space Weather Workshop

September 27-28, 2016

D. Fry, Ph.D.
Space Radiation
Analysis Group NASA



PURPOSE



.
Purpose

. . . .
Technical Strategy

. . . . . . .
Results

.
Conclusion

. . . .
Backup

WHAT IS THE PURPOSE HERE?

1. Why do we need data streams?
→ Historical answer: We need eyes on the scene because adverse Space Weather

impacts the crew, primarily Solar Energetic Proton (SEP) events.
→ This answer is not good enough.

→ Real-time data streams are needed to drive forecasting andmaintain
situational awareness which, coupled with sheltering-in-place, will
minimize dose to the human-vehicle systemwhile optimizing and
protecting the operational mission timeline.

→ But, should be driven by quantied impact and how the data will be used.
→ Storm shelter requirements with IPs being developed for Exo-LEO missions. Will

protect against 'worst-case' SEPs once on-board instrumentation alerts crew to
SEP arrival. Data streams and forecasting will direct storm shelter use and protect
critical elements of mission timeline.

2. What follows is a quantied impact assessment.
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HOW CAN WE ASSESS IMPACT?

→ Largest impact is 'free-space', not on ISS, i.e. missions outside of LEO.
→ Have a wealth of instrument data of radiation dose on ISS, some of this pertains

to space weather effects (SEPs).
→ But, times of adverse space weather impact on ISS is limited to short time frames

(upper latitude passes) and thus relatively low cumulative dose.

→ We have 'free-space' particle uxes in real-time.
→ We have 'free-space' particle uxes over ISS Expedition time frames.

→ Using these uxes to model the dose effectively moves ISS to free-space.

→ Model SEP dose on ISS and thinner shielded vehicle models using measured
free-space ux and compare with measured ISS SEP dose.
→ Will yield a quantied impact of cumulative SEP dose for exo-LEOmissions
relative to missions that have been conducted in LEO under established
processes for radiation mission operations.
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SEP CHARACTERISTICS DURING EXPEDITION TIME FRAME

→ Number of SEPs per expedition ranges from
zero (solar minimum), to 13 for Expedition 2
(near solar maximum for cycle 23). (Total of
133 events.)

→ The 'in-event' time dened as the fraction of
cumulative time SEP> 10 MeV uence was
above background levels to the total
expedition time.

→ The highest in-event time was 87% -
Expedition 3 (mid-2001 to 2002, solar max
for cycle 23).

→ Operational impacts increase with increasing
in-event time. (Discussed further in following
charts.)
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SEP DURATIONS AS A FUNCTION OF ENERGY THRESHOLD

→ To assist in understanding SEP dose relative
to 30-day thresholds one can look at
duration.

→ Well-known that time prole varies with
proton energy.

→ Calculate event duration only for events that
have non-zero uence at a given energy
above a threshold value.

→ Going to higher threshold corresponds to
ltering out less energetic (and often less
intense) events.

→ As a result the average duration
increases.

→ All long-duration events are typically also
energetic events.
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COMPARISON WITH 30-DAY LIMIT

→ Two over-arching risk-mitigation perspectives for Ops: (1) ALARA (2) NCRP
30-Day limits (distinct for skin, eye and BFO).

→ Calculations here are point doses. Although they don't take into account body
self-shielding explicitly, self-shielding represents only about 5 g/cm2 of additional
shielding thickness.
→ Small contribution for thickly-shielded vehicles (ISS, DSH, SM).
→ Larger effect for thinly-shielded vehicles (CEV). However, 70% of CEV vehicle

thickness is greater than 5 g/cm2.
→ To compare directly to ISS instrument response, self-shielding is not included.

→ To assess a mission greater than 30 days in duration and compare to 30-day limit
we have to assess the contribution from individual SEP events.
→ All SEP events over ISS Expedition time frame (2000-2012) are ≲ 30 days.
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INDIVIDUAL EVENT DOSE: EXPEDITION 1

→ Large dispersion in event dose.

→ Ratio of CEV to USLAB dose relatively
constant.

→ Largest doses correspond to large-uence
events with durations on the order of weeks
to one month.
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INDIVIDUAL EVENT DOSE: EXPEDITIONS 4 AND 5
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DOSE EQUIVALENT FOR ISS EXPEDITIONS
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COMPARISON WITH TEPC MEASUREMENTS ON ISS IN LEO

→ Use ISS measurements in LEO (via TEPC
instrument) to compare to 'free-space'
modeling with US LAB.

→ Yields an estimate of SEP event instrument
response for scenarios such as transit to
Mars.

→ Expeditions 4, 10 and 11 have the highest
estimated ratios of free-space to LEO TEPC
response.

→ Ratio is relative and depends on how well ISS
was 'phased' with high latitude regions.

→ Represents a lower bound. Could be
much larger response with
thinly-shielded vehicle.
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OPERATIONAL TIMELINE IMPACTS

→ In-event time corresponds to time that SEP
impact is part of operational decision tree.

→ 18% on average with a standard deviation of
22%.

→ However, there were 5 Expeditions where
more than half of the mission time was
impacted by having to react in real-time to
SEP events.

→ This is particularly disrupting to operational
activities that are time critical.
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OPERATIONAL TIMELINE IMPACTS: PART 2

→ For lower doses (<10 cSv) cumulative dose
equivalent increases with in-event time.

→ Largest cumulative dose equivalent
calculated correspondeds to almost a
116-day mission where the proton ux was
elevated almost more than 80% of the
mission - large operational impact.

→ Without a storm shelter and operational
strategies for using it (data streams and
subsequent forecasting capability) may be
challenging to maintain ALARA and 30-day
limit over a wide range of in-event times
(10% to> 80%).

→ Now couple this with how dose trend
correlates with mean-event time (next slide).
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OPERATIONAL TIMELINE IMPACTS: PART 3

→ Mean event time is average event duration
over a single Expedition.

→ Expeditions with large doses correspond to
mean event durations ranging from roughly 1
to 3 weeks.

→ Take home here is that although the largest
doses over an expedition correspond to time
windows on the order of 30-days, the
multitude of periods of elevated ux
over any given Expedition, without the
capability to forecast duration, peak
ux, etc, can lead to 'reacting' to these
conditions over a relatively large
fraction of the entire mission duration.
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CONCLUSIONS

→ Appears that single large episodes dominate the expedition dose and each falls within a 30-day
window.

→ Fraction of mission time responding to elevated ux over the course of any single expedition can be
quite large (see as high as 87%). Forecasting capability needed.

→ SEP dose equivalent results indicate ISS instrument response would be a minimum of a factor of
40 times greater if ISS was located in free-space than in LEO.

→ All results indicate SEP events can have a large impact on operations for missions beyond LEO.
Real-time data relevant to forecasting model input is needed to mitigate operational impacts and
optimize storm shelter use to minimize exposure and increase number of mission-safe days.

→ Moreover, we can't focus just on the human but rather the human-vehicle system. Forecasting
capability is needed for informing ight control teams when to power down critical systems.

→ Forecasting SEP onset, peak ux and time prole on a 24-hour to 72-hour window needed to
mitigate operational impacts.
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EXPEDITION TIMING WITH SOLAR CYCLE
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ASSESSMENT STRATEGY

HZETRN	  2010	  
	  

Simulate	  ISS	  TEPC	  
ac7ve	  volume	  to	  
compare	  LEO	  to	  
‘Free-‐Space’	  	  

Radia7on	  Transport	  
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SEP	  Spectrum	  

Numerically	  fit	  spectra	  for	  each	  ISS	  
Expedi7on	  from	  1	  through	  32	  

5	  Different	  vehicle	  shielding	  
distribu7ons	  that	  differ	  by	  at	  least	  an	  
order	  of	  magnitude	  in	  mean	  thickness	  

Iterate	  for	  all	  
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input	  spectrum	  
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•  Dose	  
•  Dose	  Equivalent	  
•  Compare	  

calculated	  values	  
to	  measured	  
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Output	  

•  Each	  run	  for	  a	  single	  input	  spectrum	  and	  shield	  distribu7on	  is	  
roughly	  200	  minutes	  of	  computa7on	  7me.	  

•  20	  input	  spectra	  and	  5	  shielding	  distribu7ons	  
•  Must	  run	  each	  twice	  to	  get	  both	  dose	  and	  dose	  equivalent	  
•  200	  total	  runs:	  4000	  minutes	  of	  computa7on	  7me	  (27.8	  days)	  
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VEHICLE SHIELDING DISTRIBUTIONS
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CUMULATIVE DIFFERENTIAL FLUENCE INPUT SPECTRA

→ Cumulative differential uence
spectra t with various functional
forms.
→ Power-law
→ Weibull
→ Ellison-Ramaty
→ Band

→ Choose function that yields the
lowest χ2.
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