

# Radiation Hazard for Deep Space Human Exploration

T.C. Slaba, M.S. Clowdsley

NASA Langley Research Center, Hampton, VA

7<sup>th</sup> Space Weather and NASA Robotic Mission Ops Workshop September 29-30, 2015 Goddard Space Flight Center



#### **Exposure Analysis Overview**



about/divisions/hacd/hrp/aboutspace-radiation.html

humanresearchroadmap.n asa.gov/evidence/reports/ Carcinogenesis.pdf



### Deep Space Radiation Environments

- The GCR environment is omnipresent in space and fluctuates between solar minimum and solar maximum on an approximate 11 year cycle
  - Exposures differ by approximately a factor of 2 between nominal solar extremes
  - Broad spectrum of particles (most of the periodic table) and energies (many orders of magnitude)
  - High energy and complexity of field make it difficult to shield against





### **Deep Space Radiation Environments**

- SPE/GLE are intense bursts of protons from the Sun
  - Difficult to predict occurrence, spectral shape, or magnitude
  - More likely to occur during periods of heightened solar activity (solar max)
  - Energies up to several hundred MeV (may extend up to GeV)
  - Presents serious acute risk to astronauts if not adequately shielded





#### **Exposure Quantities**

- Two exposure quantities will be used here
- Dose equivalent (mSv)
  - Radiation quality factor is used to quantify increased biological effectiveness of high LET particles compared to gamma rays
- Effective dose (mSv)
  - Weighted sum of tissue averaged dose equivalent values
  - Tissue weights quantify relative radiosensitivity of individual tissues
  - Provides a measure of human mortality risk from radiation exposure
- Note: effective dose includes detailed human model and tissue self-shielding
  - Average human thickness is ~30 g/cm<sup>2</sup> of tissue



#### **Sensitivity Studies**

- Sensitivity analysis [1]
  - Quantify extent to which each SPE or GCR ion/energy contributes to exposure behind shielding
  - Identifies primary ions/energies that are most important from radiation shielding perspective





#### Sensitivity Studies - GCR

- Energy/ion region measured by ACE/CRIS induces less than 5% of the exposure behind shielding
  - Region measured by ACE/CRIS (E < 500 MeV/n, Z = 5-28)

Relative contribution of each boundary ion/energy group to effective dose behind 20 g/cm<sup>2</sup> aluminum during solar minimum [1]. Note: a value of 0.0 indicates relative contribution < 0.1%

|           | < 0.25 | [0.25, 0.5] | [0.5, 1.5] | [1.5, 4] | > 4  | Total |
|-----------|--------|-------------|------------|----------|------|-------|
| Z = 1     | 1.2    | 5.4         | 18.2       | 18.4     | 14.8 | 58.1  |
| Z = 2     | 1.2    | 2.2         | 4.1        | 2.9      | 1.7  | 12.2  |
| Z = 3-10  | 0.0    | 3.3         | 3.8        | 1.3      | 0.8  | 9.1   |
| Z = 11-20 | 0.0    | 0.2         | 6.6        | 2.0      | 1.1  | 10.0  |
| Z = 21-28 | 0.0    | 0.0         | 4.7        | 3.8      | 2.1  | 10.6  |
| Totals    | 2.5    | 11.1        | 37.4       | 28.4     | 20.5 | 100.0 |



#### Sensitivity Studies - GCR

- Z=1 with energies >500 MeV/n induce ~51% of the total exposure behind shielding
  - Energy region has been only sparsely measured with balloon and satellite instruments
  - The AMS-02 instrument should begin to fill this very important gap in the measurement database

Relative contribution of each boundary ion/energy group to effective dose behind 20 g/cm<sup>2</sup> aluminum during solar minimum [1]. Note: a value of 0.0 indicates relative contribution < 0.1%

|           | < 0.25 | [0.25, 0.5] | [0.5, 1.5] | [1.5, 4] | > 4  | Total |
|-----------|--------|-------------|------------|----------|------|-------|
| Z = 1     | 1.2    | 5.4         | 18.2       | 18.4     | 14.8 | 58.1  |
| Z = 2     | 1.2    | 2.2         | 4.1        | 2.9      | 1.7  | 12.2  |
| Z = 3-10  | 0.0    | 3.3         | 3.8        | 1.3      | 0.8  | 9.1   |
| Z = 11-20 | 0.0    | 0.2         | 6.6        | 2.0      | 1.1  | 10.0  |
| Z = 21-28 | 0.0    | 0.0         | 4.7        | 3.8      | 2.1  | 10.6  |
| Totals    | 2.5    | 11.1        | 37.4       | 28.4     | 20.5 | 100.0 |



- Tylka et al. [2] analyzed historical GLEs from 1956-2006
  - Provided a database of Band function parameters for most of the events (58 in total)
- Tylka parameters used to quantify the contribution of various energy groups to effective dose behind shielding





- <u>On average</u>, it appears as though energy bins >500 MeV contribute very little to effective dose behind shielding
  - This turns out to be the case for most of the GLEs in the database
  - Feb 1956 (GLE5) and Sep 1989 (GLE42) are good examples of intense events with pronounced high energy tails that can make significant contributions to the total exposure





- For the Feb 1956 event (GLE5), the highest energies (> 500 MeV) make significant contributions to the total exposure beyond ~20 g/cm<sup>2</sup>
  - Energy bin between 250-500 MeV still appears to dominate the exposure up to almost 100 g/cm<sup>2</sup>
  - Energy bin >1000 MeV contributes less than 10% across all shielding thicknesses
  - Similar trends seen for Sep 1989 event (GLE42)
  - AMS-02 measurements could help constrain the high energy tails on future events





- For the Feb 1956 event (GLE5), the highest energies (> 500 MeV) make significant contributions to the total exposure beyond ~20 g/cm<sup>2</sup>
  - Energy bin between 250-500 MeV still appears to dominate the exposure up to almost 100 g/cm<sup>2</sup>
  - Energy bin >1000 MeV contributes less than 10% across all shielding thicknesses
  - Similar trends seen for Sep 1989 event (GLE42)
  - AMS-02 measurements could help constrain the high energy tails on future events





- Previous design paradigm for GCR environment
  - Exposure and risk is not effectively mitigated with passive shielding [3]
  - Increased shielding (mass) only slightly decreases exposures beyond ~40 g/cm<sup>2</sup>
  - Transport performed with HZETRN (straight ahead transport with no pion contributions)



Note: Unless explicitly stated, all GCR results in subsequent slides are for 1977 solar minimum environment



- Major updates to HZETRN transport code have recently been compared to Monte Carlo simulations
  - 3D corrections for neutrons and light ions [5,7,8]
  - Additional contributions from pions, muons and electromagnetic cascade [6]
  - Current effort underway to assess impact of transport code updates





Tissue sphere with radius 15 g/cm<sup>2</sup> surrounded by 20 g/cm<sup>2</sup> of aluminum



- Straight ahead (N=1) and bi-directional (N=2) compare reasonably well to full 3D solution (N=34) in this geometry
  - Effective dose (not dose equivalent) is used in vehicle and shield design but is more computationally intensive
  - Simplified geometry used here to provide quick comparison between transport code approximations
  - 30 cm water used to represent tissue self shielding
  - Crude geometry approximation gives results very close to effective dose values

Dose equivalent versus aluminum shield thickness with 30 cm water absorber





- The absence of water shielding greatly alters exposure versus depth results
  - Increased shielding (mass) can amplify exposure
  - Material and design optimization may be more important than previously thought for GCR environments





- Benchmarks with Monte Carlo codes are verifying a minimum in the dose equivalent versus depth curves
  - Utilizing idealized geometry in Monte Carlo simulations to enable computational efficiency
  - Geometry setup makes the local minimum appear to be more dramatic than what would be expected in a realistic vehicle (infinite lateral dimensions)
  - Local minimum is not as pronounced if effective dose is considered due to additional tissue shielding which effectively attenuates neutron contributions [9]





- For SPE environments, shield requirements are highly sensitive to the vehicle design, mission duration, destination, and other factors
  - There are no simple rules that define an optimal or sufficient shield design
  - Even if limits are met, ALARA\* principle requires design efforts to further reduce exposure
  - The SPE used as design environment can have a significant impact on determining shield requirements
  - For a given SPE, location in the vehicle and onboard equipment and supplies can also have a significant impact on SPE shield design





- Probabilistic approaches are being pursued for SPE shield design
  - Past efforts to design SPE protection concepts utilized either static, representative environments (e.g. King 1972 event) or a single energy spectrum representing a percentile flux based on a database of historical events (e.g. Xapsos model)
  - Difficult to decide which historical event or percentile flux to design against for a future mission
- New approaches are being developed that leverage computational efficiency of HZETRN transport code
  - Astronaut exposure is evaluated for each SPE in a historical database and exposure results are analyzed probabilistically [10]
  - This approach makes it possible to optimize shield design no matter the spectral shape or magnitude of the SPE





## Summary

- For human missions beyond low Earth orbit, exposure from SPE and GCR are a primary concern
- Sensitivity studies have been performed to quantify which energies in the primary SPE and GCR environments are most import to exposure quantities behind shielding
  - These studies have helped identify areas where new measurements are needed to reduce environmental modeling uncertainties (AMS-02 should be helpful in both cases)
- General shielding strategies for SPE and GCR environments
  - For SPE: passive shielding and design optimization are effective in mitigating the exposure and risk in most cases
  - In cases where limits are satisfied, the ALARA principle still requires designers to seek optimal shielding strategies and reduced exposures
  - For GCR: transport code updates and benchmarks have revealed a minimum in the dose equivalent versus depth curve for aluminum shielding near ~20 g/cm<sup>2</sup>
  - Material optimization may be more important than previously thought, and simply adding more mass to the vehicle design can actually make the problem worse



#### References

[1] Slaba, T.C. and Blattnig, S.R., GCR Environmental Models I: Sensitivity Analysis for GCR Environments. Space Weather, Volume 12, pp. 217-224 (2014).

[2] Tylka, A.J., Dietrich, W.F., Atwell, W., Assessing the Space Radiation Hazard in Ground Level Enhanced (GLE) Solar Particle Events. 2010 Fall AGU Meeting, San Francisco, CA (2010).

[3] Durante, M., Cucinotta, F.A., Physical Basis of Radiation Protection in Space Travel. Reviews of Modern Physics, Volume 83, pp. 1245-1281 (2011).

[4] Slaba, T.C., Blattnig, S.R., Badavi, F.F., Faster and more Accurate Transport Procedures for HZETRN. Journal of Computational Physics, Volume 229, pp. 9397-9417 (2010).

[5] Slaba, T.C., Blattnig, S.R., Aghara, S.K., Townsend, L.W., Handler, T., Gabriel, T.A., Pinsky, L.S., Reddell, B., Coupled Neutron Transport for HZETRN. Radiation Measurements, Volume 45 pp. 173-182 (2010).

[6] Norman, R.B., Slaba, T.C., Blattnig, S.R., An Extension of HZETRN for Cosmic Ray Initiated Electromagnetic Cascades. Advances in Space Research, Volume 51, pp. 2251-2260 (2013).

[7] Wilson, J.W., Slaba, T.C., Badavi, F.F., Reddell, B.D., Bahadori, A.A., Advances in NASA Radiation Transport Research: 3DHZETRN. Life Sciences in Space Research, Volume 2, pp. 6-22 (2014).

[8] Wilson, J.W., Slaba, T.C., Badavi, F.F., Reddell, B.D., Bahadori, A.A., 3DHZETRN: Shielded ICRU Spherical Phantom. Life Sciences in Space Research, Volume 4, pp. 46-61 (2015).

[9] Slaba, T.C., Mertens, C.J., Blattnig, S.R., Radiation Shielding Optimization on Mars. NASA Technical Paper 2013-217983 (2013).

[10] Kim, M.H., Hayat, M.J., Feiveson, A.H., Cucinotta, F.A., Prediction of Frequency and Exposure Level of Solar Particle Events. Health Physics, Volume 97, pp. 68-81 (2009).