

Biological Effects of Radiation

Kerry Lee NASA Johnson Space Center, Houston, TX

- Space Weather and SRAG
- Vocabulary Zoo
- ISS Instrumentation
- MPCV
 - BIRD Results from EFT-1
 - HERA Overview for EM-X Missions
 - ConOps for SPE Contingency
- Radiation Risk

Space Radiation Analysis Group

- Located at the Johnson Space Center in Houston, TX
- SRAG, est. 1962
 - Real-time console operations
 - Crew, ambient monitoring
 - Pre-flight planning
 - Design evaluations
- Radiation Health Office
 - Interpretation
 - Record Keeping
 - Risk Estimation
 - Crew Selection

Integration/Projects) Nota Alanager - Rhodes, Bradley J. Haven, Cindy Mcmonigal, Kathleen, M.D. Hill, Terry – CH&S Project Manager	J. J. J. J. J. J. J. J. J. J. J. J. J. J	tical Operations Division (SD) ef – Taddeo, Terrance, M.D. Chief – Keprta, Sean, MS, CIH ciate Division Chief – Vacant etary – Durrschmidt, Doreen, RCJV in Officer – Nimmons, Deitra	Budget Hare, Stacy Sanchez, Maria
Human Space Flight Operat Acting Chief – Sr Secretary – Durrschmidt,	ations Branch (SD2) Grb, Nancy It, Doreen, RCJV Mission Support Group	<u>Occupational H</u> Chief –Ta Deputy Chief – F Delgado, Richa Secretary – G	<u>Health Branch (SD3)</u> rver, Bill, M.D. ^F ogarty, Jennifer, Ph.D. rd – Business Support aines, Karen, RCJV
Medical Operations Group (MOG)Lead(MOG)LeadLead-Dervay, Joseph, M.D.Alexander, David, M.D.Bauer, Pete, M.D.Beven, Gary, M.D.Chamberlain, Blake, M.D.Effenhauser, Rainer, M.D.Gilmore, Steve, M.D.Hart, Steve, M.D.Holland, Al, Ph.D.Law, Jennifer, M.D.	<u>(MSG)</u> ead - att, Terri aven, Cindy nder, Kristen cCollum, Suzanne eigut, Joe ms, Clarence, Ph.D. nchez, Rick hwanbeck, Nicole ence, Lisa	Occupational and <u>Aerospace Clinics</u> Johnston, Smith, M.D. Locke, James, M.D. Shackelford, Linda, M.D. <u>Human Test Support</u> Locke, James, M.D.	Human Test Subject Selection Shackelford, Linda, M.D. M.D. <u>Astronaut</u> <u>Occupational</u> <u>Health/Epidemiology</u> Van Baalen, Mary Kadwa, Binaifer (Bini)
Moynihan, Shannan, M.D. Scheuring, Richard, D.O. Schmid, Josef, M.D. Stepaniak, Phil, M.D. Ulissey, Lars, M.D. (USAF)	Radiation Group (RG) ead - Semones, Edward, CHP hadori, Amir (SRAG) y, Dan (SRAG)		Institutional Support Martel, Robert, MPH Plaza, Angel, Ph.D. Stanch, Penney, CIH, CSP

Radiation Sources

Solar images from SOHO, a project of international cooperation between ESA and NASA. GOES data courtesy of NOAA Space Weather Prediction

STS-116: Example Progression

Probability?

Dec 8 Dec 9 Dec 10 Dec11 Dec 12 Dec 13 Dec14 Dec 15 Dec 16 Dec 17 Universal Time Universal Time + Universal Time Updated 2006 Dec 10 23:56:05 UTC NOAA/SEC Boulder)06 Dec 16 23:56:06 UTC NOAA/SEC Boulder, 06 Dec 13 23:56:08 UTC NOAA/SEC Boulder, CO USA

Space Weather Terminology: Words are Important

- Solar Flare large amount of electromagnetic energy released from the Sun. In particular, X-ray emission is monitored as there is an observed correlation between X-ray energy release and particle acceleration. The electromagnetic energy release has no operational impact. The X-rays has much lower intensity than dental x-rays
- A Solar Particle Event (SPE) is denoted by observation of proton flux of Solar Energetic Particles (SEP) greater than a given energy (e.g. >10MeV or >100 MeV)
- Coronal Mass Ejection (CME) results when the energy released by a flare is great enough to throw solar mass (mostly protons) with a velocity great enough to escape the Sun's gravity and magnetic fields. CMEs take 1-3 days to arrive at Earth and disturb the geomagnetic field.

Visual Terrestrial Analogy

Biological Radiation Terminology

- Dose
 - Measureable quantity of Energy per mass (J/kg = Gy)
- Dose Equivalent
 - Dose multiplied by a biological effectiveness quality factor (Q), that is a function of LET (Linear Energy Transport) (units of Sv)
- Equivalent Dose
 - Dose multiplied by radiation type specific weighting factor. This weighting factor is a function of particle type and energy
- Effective Dose
 - A way to determine whole body radiation effects by weighting equivalent dose within an organ by the organs tissue weighting factor and summing over the exposure to all organs.
- Radiation Cancer Risk
 - A calculated chance of some given radiation exposure to result in cancer

ISS Instrumentation

- CPDS Charged Particle Directional Spectrometer
- REM Radiation Environment Monitor
 - Active dosimeter with USB interface
- TEPC Tissue Equivalent Proportional Counter
 - Located in ISS Service Module
- IV-TEPC new TEPC detector
 - Moves about ISS every 4-6 weeks
- ISS-RAD Radiation Assessment Detector

Radiation Environment Monitor (REM)

The Timepix Detector

- Developed as a High Energy Physics application of medical imaging technology
- Hybrid Pixel Detector with independent counting and readout circuitry in each pixel footprint
- 256 x 256 pixel grid with total area of 2 cm2

Credit: NASA

- Oct. 2014: Flight hardware shipped to KSC
- Nov. 2014: Installed into EFT-1 vehicle
- 5 Dec. 2014: EFT-1 Launch
- 9 Dec. 2014: Recovered from vehicle
- Feb. 2015: Data report delivered to HQ
- June 2015: NASA Technical Publication (NASA/TP 2015-218575)

Hardware post flight

BIRD Preflight checkout at KSC

Vehicle Attachment

4.2"

Copper bonding strip positioned to contact an alodined surface

Acceleration

Left Detector

Dose Rate [µGy/min]

Dose Rate [µGy/min]

Cumulative Absorbed Dose

	BIRD [mGy]	RAM [mGy]	ISS-TEPC [mGy]	
Left	17.9	15.1 ± 0.3	0.015	
Right	15.7	13.5 ± 0.2		

Left Detector

Right Detector

Dose Equivalent Rate [µSv/min]

Rates vs. Altitude and Time

Average Altitude [km]

Average Altitude [km]

Rates vs. Latitude/Longitude

Google Earth Video

Anisotropy

Trapped proton environment below about 2000 km is known to be anisotropic

- EFT-1 presented a unique opportunity
 - First measurements in Orion MPCV
 - Information about EM-2
- Detector operation
 - Met all expectations
 - No apparent data corruption
- Data
 - Two peaks caused by spectral changes
 - Max absorbed dose rate about 1 mGy/min
 - Absorbed dose 1000x ISS TEPC

HERA Power and Sensor Units

HERA Power Unit (HPU) HERA Sensor Unit (HSU)

SPE Contingency Plan Scenarios: (Effective Dose due to King '72 SPE)

Scenario 1: D&E stowage on

top

Scenario 3: D&E stowage in 8 boxes on top

Scenario 4: D&E stowage in 16 boxes on

top

Scenario 5:

18 boxes on top and 20 canisters in WMS Crew1: 114 mSv Crew2: 117 mSv Crew3: 119 mSv Crew4: 113 mSv

Crew1: 109 mSv Crew2: 122 mSv Crew3: 111 mSv Crew4: 106 mSv

Crew1: 105 mSv Crew2: 117 mSv Crew3: 106 mSv Crew4: 98 mSv

Crew1: 95 mSv Crew2: 110 mSv Crew3: 106 mSv Crew4: 98 mSv Scenario 2:

Ideal stowage configuration

Crew1: 85 mSv Crew2: 102 mSv Crew3: 100 mSv Crew4: 98 mSv

A little about Risk

- Calculated quantity cannot be measured
- Our best knowledge of radiation: tissue interaction, cells damage/repair, mutation, cause of earlier death
- Risks include cancer, CNS, cardiovascular disease
- Based off of limited human statistics (A-Bomb survivors and Nuclear accidents)
- Based off animal exposure studies with relatively high doses
- Extrapolation of mouse models to humans
- Extrapolation of short high doses to low doses over long periods of time

ERROR BARS ARE BIG

- Deep space missions over ~100days exceed the current NASA limit
- NASA risk limit: 3% REID at upper 95% CI

Basic Radiation Safety and Engineering Problems

- Reduce Time of Exposure
 - Deep space missions lengths are fixed by destination and propulsion system
- Increase Distance from Source
 - Space radiation is ubiquitous
- Increase Shielding
 - Space missions are severely mass limited due to high launch costs
 - Shielding is ineffective against GCR

- Tools for evaluating risk
 - Environmental models
 - Trapped particles (protons and electrons)
 - GCR (modeled as H through Ni)
 - SPE (probabilistic modeling)
 - Particle transport (HZETRN)
 - Vehicle models and human phantoms
 - Risk models
- Dosimetry provides "anchors" for the tools above
 - RAM/CPD data used to determine relative contributions of GCR and trapped protons for ISS
 - MPCV missions: HERA + RAM/CPD

Risk Models

- Evolution of radiation risk models at NASA
 - Pre-2012: effective dose approach
 - LSS mortality-based risk coefficients
 - Gender and age dependency
 - Leukemia and solid cancer risks
 - NSCR 2012*: organ risk approach
 - Risks for organs tracked separately
 - LSS incidence-based risk coefficients
 - UNSCEAR
 - BEIR VII
 - Preston et al
 - Never-smoker status
 - Future*: normal weight population, NTE, circulatory effects, CNS effects, etc.

*Cucinotta, Kim, and Chappell. <u>Space Radiation Cancer Risk Projections and</u> <u>Uncertainties – 2012</u>. NASA/TP-2013-217375.

Quality Factor

• Pre-2012

- Function of LET in water
- ICRP 26 then ICRP 60

• NSCR-2012*: NASA QF

- Track structure-based model
- Function of Z, β
- Various adjustable parameters informed by radiobiology data
- Important contributor to uncertainty

*Cucinotta, Kim, and Chappell. <u>Space Radiation Cancer Risk Projections and</u> <u>Uncertainties – 2012</u>. NASA/TP-2013-217375.

Uncertainty Assessment

- NASA risk limit is inherently statistical
- Monte Carlo sampling used to determine overall uncertainty distribution
- Subjective probability density functions
 - NCRP Report No. 126
 - Risk models
 - DDREF (Bayesian analysis)
 - Quality factor

Summary

- SRAG Operations for future exploration missions need additional forecasting capability due to being unprotected in free space
- The ConOps for a radiation contingency event on MPCV is established and the details are being worked. Protection is possible below required limit without flying any parasitic mass
- MPCV radiation instrumentation is being built
- Risk is the quantity that the NASA radiation requirement is built on. Better understanding of biological effects of radiation are needed to reduce the error