Space weather and Mars: Observations from MAVEN

Jared Espley Laboratory for Planetary Magnetospheres NASA Goddard

Ancient Mars was warm and wet; modern Mars is cold and dry

Ancient wet Mars

Modern dry Mars

The martian "magnetosphere"

Magnetosheath Foreshock **Induced** magnetosphere Magnetotail BOINSMOC etopause From D. Brain

Terrestrial vs. Martian Magnetospheres

Did the solar wind erode away the martian atmosphere?

- 1. Liquid metallic core produces planetary magnetosphere
- 2. Core solidifies and magnetosphere lost
- 3. With no planetary magnetosphere, the solar wind gradually erodes the martian atmosphere
 - Generally very mild effect but it has had 3.5 billion years to work (plus solar storms).

MAVEN science measurements

MAVEN Orbit and Primary Mission

- Mars Atmosphere and Volatile Evolution Mission CU/LASP • GSFC • UCB/SSL • LM • JPL
- Elliptical orbit to provide coverage of all altitudes
- The orbit precesses in both latitude and local solar time
- One-Earth-year mission allows thorough coverage of near-Mars space

CU/LASP, GSFC, UCB/SSL, LM, JPL

Space weather and MAVEN

- Operational responses?
 - Very limited (e.g. Comet Siding Spring)
- Science opportunities
 - Space weather drives atmospheric escape: main MAVEN goal
- Collaborative opportunities
 - Comparisons with heliospheric simulations (e.g. ICME, SEP arrival times)
 - Upstream/downstream monitoring (e.g. ACE, STEREO, DSCVR, Mars Express, Rosetta)

9

MAVEN contacts

- Bruce Jakosky, PI, U-Colorado
- Janet Luhmann, Deputy PI, UC-Berkley
- Joe Grebowsky, Project Scientist, GSFC 695
- Phil Chamberlin, EUV team, GSFC 670
- Jared Espley, MAG team, GSFC 695
- Jacob Gruesbeck, MAG team, GSFC 695

Jared.Espley@nasa.gov

Hypothesis: Mars lost its magnetosphere so the solar wind eroded its atmosphere

CU/LASP • GSFC • UCB/SSL • LM • JPL

Liquid metallic core produces planetary dynamo and magnetosphere Core solidifies and dynamo ceases

Solar wind interacts directly with the ionosphere and gradually erodes the atmosphere over billions of years

Solar Wind Electron Analyzer (SWEA) David L. Mitchell, SSL

SwEA Flight Analyzer	 Measurement objectives: Measure energy and angle distributions of electrons in the Mars environment Determine electron impact ionization rates Measure magnetic topology via loss cone measurements Measure primary ionospheric photoelectron spectrum Measure auroral electron populations Evaluate plasma environment
 Technical details and heritage: Hemispherical Electrostatic Analyzer Electrons with energies from 5 eV to 5 keV FOV 360° X 130° Angular resolution 22.5° in azimuth, better than 14° in elevation Energy fluxes 10³ to 10⁹ eV/cm²-s-ster-eV Energy resolution 18% (capability for 9% below 50 eV) Based on STEREO SWEA 	MGS measurements of auroral electrons:

Solar Wind Ion Analyzer (SWIA) Jasper Halekas, SSL

SWIA Engineering Model	Measurement objectives: • Density and velocity distributions of solar wind and magnetosheath ions to determine the charge exchange rate and the bulk plasma flow from solar wind speeds (~350 to ~1000 km/s) down to stagnating magnetosheath speeds (tens of km/s).
 Technical details and heritage: Proton and alpha velocity distributions from <50 to >2000 km/s, density from 0.1 to >100 cm⁻³. Energy resolution of ~10% and angular resolution of ~22.5° (4.5° around sun). Intrinsic time resolution of 4 s. Heritage from Wind, FAST, and THEMIS. 	Similar measurements provided by <i>Wind</i> :

Solar Energetic Particle (SEP) Analyzer Davin Larson, SSL

35

Suprathermal and Thermal Ion Composition (STATIC)

Langmuir Probe and Waves (LPW) Bob Ergun, LASP

Magnetometer (MAG) Jack Connerney, GSFC

Magnetic field Magnetic field Magnetic field Magnetic field Magnetic field	 Measurement objectives: Vector magnetic field in the unperturbed solar wind (B ~ 3 nT), magnetosheath (B ~ 10-50 nT), and crustal magnetospheres (B < 3000 nT) Ability to spatially resolve crustal magnetic cusps (horizontal length scales of ~100 km)
 Technical details and heritage: Magnetic field over a dynamic range of ~ 0.1 nT to ~ 60,000 nT, with 1 sec time resolution (4 km spatial resolution), 1° angular determination, and 5% precision on scalar value Heritage: MGS, Voyager, AMPTE, GIOTTO, CLUSTER, Lunar Prospector, MESSENGER and others; identical to MAG on STEREO 	MGS MAG measurements: Orbit P018 Start Time"D0Y 284 1997 Oct 11 13:08 UT" 50 40 50 40 50 40 50 40 50 50 40 50 50 50 50 50 50 50 50 50 5

Imaging Ultraviolet Spectrometer (IUVS) Nick Schneider, LASP

CAD drawing of IUVS	 Measurement objectives: Vertical profiles of neutrals and ions through limb emissions and lower atmosphere properties from stellar occultations Disk maps from near apoapsis. D/H and hot oxygen coronal mapping Atmospheric properties below homopause
 Technical details and heritage: Imaging spectroscopy from 110-340 nm, with resolution of 0.5 nm Vertical resolution of 6 km on limb, horizontal resolution of 200km in nadir viewing Detectors: Image-intensified 2-D active pixel sensors Most recent heritage from AIM CIPS 	h d d d d d d d d d d d d d d d d d d d

Neutral Gas and Ion Mass Spectrometer (NGIMS) Paul Mahaffy, GSFC

CAD drawing of NGIMS	Measurement Objectives:
Flight Quadrupole Housing	 Basic structure of the upper atmosphere (He, N O, CO, N₂, NO, O₂, Ar and CO₂) and ionosphere from the homopause to above the exobase Stable isotope ratios, and variations
Technical Details:	
 Quadrupole Mass Spectrometer with open and closed sources Closed source measurements: non-reactive neutrals Open source species: neutrals and ions Mass range: 2 - 150 Da Mass resolution: 1 Da over entire mass range Modes: scan entire spectra or adapt to fixed masses Sensitivity: 10⁻² (counts/s)/ (particles/cm-3) Heritage from Galileo GPMS, Pioneer Venus ONMS, CASSINI INMS, Contour NGIMS 	GPMS spectra in the 17 to 18.5 bar region of Jupiter's atmosphere

LPW – EUV Monitor Frank Eparvier, LASP

Parameters driving escape

- Extreme UV (EUV) flux
- Solar wind pressure
- Solar Energetic Particle (SEP) flux
- Interplanetary Magnetic Field (IMF) direction
- Subsolar longitude (i.e. crustal field location)
- Season (i.e. convolution of heliocentric distance and subsolar latitude).

6-D parameterization of total escape rate: Escape Rate (EUV, IMF, SEP, P_{SW} , L_s , $\phi_{subsolar}$)

- Nominal periapsis near 150 km.
- Five "deep-dip" campaigns with periapsis near 125 km.

Mars has no planetary magnetic field

- Portions of the Martian crust are highly magnetized
- Definitely not global – very localized

Crustal fields indicate Mars used to have planetary field

- Ancient terrain have fossil fields (frozen locally into rocks)
- Newer terrain is completely unmagnetized

How to test this hypothesis?

The MAVEN mission (Mars Atmosphere and Volatile EvolutioN)

Three main science goals:

- Determine the structure and composition of the Martian upper atmosphere today
- Determine rates of loss of gas to space today
- Measure properties and processes that will allow us to determine the integrated loss to space through time

The MAVEN Science Instruments

Mass Spectrometry Instrument

Neutral Gas and Ion Mass Spectrometer; Paul Mahaffy, GSFC

NGIMS

Particles and Fields Package

Solar Energetic Particles; Davin Larson, SSL

Remote-Sensing Package

Imaging Ultraviolet Spectrometer; Nick Schneider, LASP

IUVS

Solar Wind Electron Analyzer; David Mitchell, SSL

Solar Wind Ion Analyzer; Jasper Halekas, SSL

MAG

Langmuir Probe and Waves; Bob Ergun, LASP

Magnetometer; Jack Connerney, GSFC

Charts by R. Lillis 29