Radiation and Plasma Effects Working Group

Decided to focus on space weather models, impact: Not bothered about GCR codes or trapped proton codes (except maybe for comparison purposes).

Space weather effects include:

- Surface charging (J. Minow, N. Ganushkina, D. Pitchford)
- Internal Charging (P. O'Brien, Y. Shprits)
- SEEs (M. Xapsos, P. Jiggens, J. Mazur)
- Radiation at aviation altitudes (K. Tobiska, M. Meier)
- Total Dose in solar array and electronics due to SPEs and electron enhancements (I. Jun, M. Xapsos, T. Guild)
 - >100 keV electrons
 - >1 MeV protons

Summary of Metrics

- 1. Fix Orbits: polar LEO, MEO, GEO, GTO, polar aircraft route
- 2. Derive effects metrics based on standard orbits/components.

	Effect Metric	Science Predictands	Time Period (Space Weather)
Surface charging	12 keV e- flux	12 keV e- flux; Te; Ne	seconds
Internal charging	>100 fA/cm² [100 mils]	1 MeV and >2 MeV e-flux	24-hour averaged
SEEs	SEE rate [100 mils]	>30 MeV p+ flux; >15 MeV.cm ² .mg ⁻¹ LET flux	5-min, daily, weekly
TID	Dose in Si [100 mils; 4 mils]	30-50 MeV p+ flux; >1.5 MeV e- flux 1-10 MeV p+	Daily, weekly
Aviation	Dose rate in aircraft (D-index)	2 spectral parameters (power law with rigidity)	5-min, Hourly

Surface Charging Status

- Initial effort will focus on high priority GEO, MEO, GTO, and LEO polar environments where surface charging can exceed hundreds of volts
- User groups include spacecraft designers, operational situational awareness, anomaly investigations, and impact on science measurements
- Metrics (team is evaluating options):
 - Statistical evaluation using O'Brien "green anomalies" technique
 - Parameters used for inputs to charging models
 - GEO, MEO, GTO: Ne, Te, Ni, Ti or other
 - LEO polar (auroral): Ne, E_{beam} , ΔE_{beam} , and other Fontheim parameters
 - Flux spectra at different locations
- Environment models (initial focus):
 - Ovation CCMC implementation
 - LANL model (Vania Jordanova)
 - IMPTAM (Natalia Ganjushkina)), run online in near-real time since 2013
 - CIMI (Natalia Buzulukova)
- Spacecraft charging models (secondary effort, but compare with $\Phi_{\mathrm{s/c}}$)
 - Nascap
 - SPIS
 - SPENVIS, MUSCAT, and other small group charging codes

Internal Charging Summary

Internal charging headline metrics:

- User Metrics: % Green anomalies for 24-hour average current beneath 100 mils Al spherical: GEO, GTO
- Science Quantity (stat TBD): Omnidirectional differential or integral flux: GEO, GTO

Internal charging events/intervals

- 2015 has some nice big storms, RBSP data to validate
- The March, April, June, and July 2015 storms (TBR: need CME and CIR/HSS storms)

Internal charging "comprehensive" metrics:

- User Metrics Add: 6-, 72-hour averages; 40, 350 mils; LEO, HEO, GNSS
- Science Quantities Add: locally mirroring flux; 0.1-1 MeV; LEO, HEO, GNSS

Models (**Bold** indicates high probability of running benchmarks soon):

- VERB, RBE/CRCM/CIMI, DREAM, BAS, Rice REM, Salammbo
- CRRESELE in Ap mode
- GREEP, SWPC REFM, Ukhorskiy nearest neighbors, NARMAX

Internal Charging Areas of Concern

- We are not currently addressing how the metrics account for model error: is it really a "green" anomaly if the model error bar included some yellow?
- We are not addressing mission design specs (Satellite design users, govt agency, insurers): out of scope, and hard to validate a 95% confidence value for 10-year worst case without 200 years of data.
- How do we address designer, insurer, govt agency needs? By including most severe, well-observed events in our validation set.
- We are concerned about the comparability of models with different inputs (observed initial/boundary conditions, versus initial/boundary conditions provided by a coupled model)

Total ionizing dose – Preambles

- Total dose is a climatological quantity, not space weather quantity
 - For mission duration
 - In order of days or years
- Total dose estimate for a mission uses a long-term average environment, not the worst case environment
- Quantities that are need to compute total dose
 - Trapped electron and proton fluence spectra for a given mission duration
 - SEP mission fluence spectrum
- Empirical (climatological) models are typically used for total dose calculation for a mission
 - e.g., AP9/AE9 for trapped particles or JPL/ESP for solar protons

(1) Identify user groups

- Satellite designer (SD) for both commercial and government
- Satellite operators and anomaly analysts (SOAA) for both commercial and government
- Scientists (SCI) for both academia and government

(3) Identify metrics for each user group

- SD: Dose-depth for the mission
- SOAA: Dose-depth from launch to given time (there are some data available)
- SCI: proton and electron energy spectra
 - Electrons for > 100 keV
 - Protons for > 1 MeV

(5) Identify empirical models for each metric

- Trapped: AE8/AP8; AE9/AP9/SPM; IGE2006/POLE (other older models are also available (e.g., CRESSELE, CRESSPRO, etc.))
- Solar: King (1972); JPL; ESP/PSYCHIC; SAPPHIRE

(7) Identify physical model for each metric

- Trapped: SALAMMBO; DREAM
- Solar: SOLPENCO

Insoo Jun, Mike Xapsos

Future Need

- Climatological models
- Flight data to continuously improve and update the existing empirical models
 - Flux energy spectra
 - Dosimeter data

SEEs: Summary

- Trapped protons
 - AP9 (also AP8 still used in some standards);
 - PSB97 + update (local model based on SAMPEX/PET)
- SEPs
 - ESP-PSYCHIC
 - JPL
 - MSU
 - SAPPHIRE
- GCRs
 - ISO-15390 GCR model
 - Badhwar-O'Neill (BON)
 - DLR GCR model
- Magnetospheric Modelling codes:
 - ESHIEM-MSM (magnetospheric shielding code)
 - Shea and Smart model

Relevant parameters

- a) SD+SLAO (SEU rate): proton fluxes (>30 MeV & > 50 MeV) [radiation belt peak vales (5-minute); worst-case SEP values; worst-case solar particle event (SPE) fluence]
- b) SD (SEL/SEB probability): proton fluences (>30 MeV & > 50 MeV) [Orbit-averaged radiation belt flux (fluence); cumulative SEP fluence]
- c) SD+SLAO+SO: Abundance ratios and charge states of SEP heavy ions (Z>2) [extension to event-to-event variability/distributions if possible]
- d) SD+SLAO: LET behind nominal shielding** (1 g.cm⁻²)
- **application of particle transport codes as black box only to derive useful quantities

Validation methods

- a). Statistical evaluation using O'Brien "green anomalies" technique
- b. Event /interval based

Summary: Radiation Effects for Aviation

- 1. data: compare absorbed dose rate in silicon or ambient dose rate equivalent, depending on instrument characteristics
- 2. models: compare effective dose rate
- 3. RMS metrics for error
- 4. use version numbers for data and models
- need more data (spectral and TID) for model comparison/ validation
- 6. report time (UT), lat, lon, dose rate for ease of comparison
- 7. support development of D-index for aviation community and discourage use of NOAA S-scale for aviation radiation

Statistics for Flux-based Metrics

- Want a metric that treats 2x error same as 0.5x error, does not explode when flux is zero
- Working w/ Steve Morley to define metrics based on Median Symmetric Accuracy with support
- MSA = 100% x Median of {|Big Small|/Small}
- Big is the larger of flux or observation, Small is the smaller one
- Support means determining a floor on the observations below which all observed or modeled values are replaced by the floor itself.
 - Avoids zeros in denominator.
 - Does not penalize model for estimating fluxes well below the 1 count level of a flux sensor.
- In addition to MSA, we will include metrics that separate error bias from error spread
- (Bias can sometimes be attributed to the instrument, not the model, so we want to break it out)

Summary of Metrics

- 1. Fix Orbits: polar LEO, MEO, GEO, GTO, polar aircraft route
- 2. Derive effects metrics based on standard orbits/components.

	Effect Metric	Science Predictands	Time Period (Space Weather)
Surface charging	12 keV e- flux	12 keV e- flux; Te; Ne	seconds
Internal charging	>100 fA/cm² [100 mils]	1 MeV and >2 MeV e-flux	24-hour averaged
SEEs	SEE rate [100 mils]	>30 MeV p+ flux; >15 MeV.cm ² .mg ⁻¹ LET flux	5-min, daily, weekly
TID	Dose in Si [100 mils; 4 mils]	30-50 MeV p+ flux; >1.5 MeV e- flux 1-10 MeV p+	Daily, weekly
Aviation	Dose rate in aircraft (D-index)	2 spectral parameters (power law with rigidity)	5-min, Hourly