The ionospheric quiet-time variation as a challenge for model validation tests: preliminary considerations

I. Tsagouri¹, J. S. Shim², M. M. Kuznetsova³

¹National Observatory of Athens, Greece

²CUA/NASA GSFC, Greenbelt, MD, USA

³ NASA GSFC, Greenbelt, MD, USA

International CCMC-LWS Working Meeting: April 3-7, 2017 Cape Canaveral (FL, USA)

Ionospheric variability

The ionosphere is not the same every day since it is a highly coupled system: ionization production, loss and transport

$$\partial N_e / \partial t = q - I(N_e) - div(N_eV)$$

Electron density: changes over multiple timescales ranging from approximately minutes (e.g., solar flare effects) to solar cycle durations (~11 years).

Normal (diurnal, monthly, seasonal, solar cycle, latitudinal, longitudinal depedence) Transient (e.g. space weather effects) defined with respect to normal changes

Large scale ionospheric storm-time disturbances in plasma density

Positive storm effects:

increase in ionospheric ionization wrt background conditions

Negative storm effects:

decrease in the ionospheric ionization below background conditions

Motivation

Quantification of the quiet time ionospheric variation

- Assessment of climatological models (long-term predictions)
- Quantification of the storm impact – assessment of modeling capabilities for ionospheric short-term forecasting applications

Physical quantities:

NmF2/foF2; hmF2; vTEC

Options

- □ Average over 5-quietest days within a month
- Average over 5-quietest days within 30-days prior to an event

Standard "prediction" approaches

- □ Monthly medians
- □ Running medians (30-days prior to an event) Suitable for "real time" applications

Selection of the quiet days

For the selection of the five days we use the following criteria:

- ▶ Min Dst index \ge -30 nT for the day and the previous one
- Max AE index ≤ 250 nT for the day and the previous one

	5 Quietest days within the month	5 Quietest days prior to the event
16-20 March 2013	6/3, 7/3, 8/3, 25/3, 26/3	25/2, 27/2, 6/3, 7/3, 8/3

Data presentation

Autoscaled values of foF2 and hmF2 from Chilton ionosonde: Autoscaling error less than 0.7 MHz (Bamford et al., Radio Science, 2008)

Ionospheric	Geographic	Geographic	GPS	Geographic	Geographic
Station	longitude	latitude	Station	longitude (°E)	latitude (°N)
	(°E)	(°N)			
Chilton	359.4	51.5	HERT	0.334	50.867

vTEC estimates used here are based on data from HERT GPS receiver. They are calculated from Receiver Independent Exchange Format (RINEX) files with 30 s sampling, using the single station solution proposed by Ciraolo (2005) and Ciraolo et al. (2007) that assumes that the ionosphere is a thin layer at 300 km altitude.

Chilton (foF2) – March 2013

Error bars: STDs (Uncertainties mainly due to ionogram autoscaling errors and quiet time variability)

Mean STD monthly medians: **0.4 MHz**Mean STD 5 quiet days in the month: **0.3 MHz**

Mean STD running medians: **0.4 MHz**Mean STD 5 quiet days before the event: **0.4 MHz**

Chilton (foF2) – March 2013

 $STD (\%) = (STD_foF2x / foF2x)*100$

x: median, running median, average over 5 quiet days

Mean STD (%)monthly medians: 8 %

Mean STD (%) 5 quiet days in the month: 6 %

Mean STD (%) running medians: 9%

Mean STD (%) 5 quiet days before the event: 8%

STD (%) is estimated over each time of the day

Information that may be extracted

- Local time dependence of the uncertainties:
 e.g., for the case under study here the
 uncertainties are significantly larger in dawn
 sector in all terms (for Chilton UT=LT)
- Monthly medians are comparable to the average of 5 quiet days within the month, while running medians are comparable to the average of 5 quiet days prior to the storm event. On average, all approaches may be considered comparable
- On average, ionospheric variations of about 10% wrt quiet conditions may be ignored.

Chilton (hmF2) – March 2013

Error bars: STDs (Uncertainties mainly due to ionogram autoscaling errors and quiet time variability)

Mean STD monthly medians: 26 km
Mean STD 5 quiet days in the month: 21 km

Mean STD running medians: 23 km
Mean STD 5 quiet days before the event: 23 km

Chilton (hmF2) – March 2013

STD (%) = ($STD_hmF2x / hmF2x$)*100

x: median, running median, average over 5 quiet days

Mean STD (%)monthly medians: 10 %

Mean STD (%) 5 quiet days in the month: 8 %

Mean STD (%) running medians: 9%

Mean STD (%) 5 quiet days before the event: 8%

STD (%) is estimated over each time of the day

Extracted information

- Some local time dependence of the uncertainties in monthly medians in the prenoon sector (for Chilton UT=LT)
- On average, all approaches may be considered comparable
- On average, ionospheric variations of about 10% wrt quiet conditions may be neglected.

HERT (vTEC) – March 2013

Mean STD monthly medians:

Mean STD 5 quiet days in the month: 1.2 TECu

Mean STD (%)monthly medians:

Mean STD (%) 5 quiet days in the month: 11 %

Chilton (foF2) – March 2013

