

Plasmasphere contribution to "total electron content"

International CCMC-LWS Working Meeting
April 4, 2017

Jonathan Krall and Joseph D. Huba Plasma Physics Division, Naval Research Laboratory

Supported by the NRL base program and the NASA/HSR program

"Total electron content"

TEC (total electron content) is vertically-integrated density; $1 \text{ TECU} = 10^{16}/\text{m}^2$.

TEC is not the number of electrons over a square meter.

pTEC can be defined as the TEC contribution between JASON altitude (1340 km) and GPS altitude (20,200 km).

pTEC is stronger at solar maximum [Lee et al., 2013; Shim et al 2017].

During solar maximum, the atmosphere expands, slowing refilling of the plasmasphere, leading to the "plasmasphere electron content paradox" [Krall & Huba, 2016].

TEC = iTEC + pTEC

Measured pTEC result based on data from 2002-2009.

Refilling rates lower at solar max

It is well-known that post-storm plasmasphere refilling rates fall with solar activity.

Refilling times are longer at solar maximum.

The paradox is that refilling rates fall with increasing solar activity while pTEC increases with increasing solar activity.

NRL SAMI3 Ionosphere/Plasmasphere Model

- Magnetic field: IGRF-like Non-tilted dipole
- Interhemispheric
- Nonorthogonal, nonuniform fixed grid
- Seven (7) ion species (all ions are equal): H^+ , He^+ , N^+ , O^+ , N_2^+ , NO^+ , and O_2^+
 - Solve continuity and momentum for all 7 species
 - Solve temperature for H⁺, He⁺, O⁺, and e⁻
- Plasma motion
 - ullet $\mathbf{E} imes \mathbf{B}$ drift perpendicular to $oldsymbol{\mathsf{B}}$
 - Ion inertia included parallel to B
 HWM14
- Neutral species: NRLMSISE00 and HWM93
- Chemistry: 21 reactions + recombination
- Photoionization: Daytime (EUVAC) and nighttime

SAMI3 is coupled to a magnetosphere potential model and a thermosphere model.

[Huba et al., JGR, 2000; Huba and Joyce, GRL, 2010; Huba and Krall, GRL, 2013]

SAMI3/MSIS* agrees with observations

As in measurements, both TEC and pTEC increase with F10.7.

TEC measures near-Earth electrons

At solar max, O/O+ collisions limit O+ and H+, reducing refilling. This effect can be seen a high altitudes.

pTEC isn't strongly affected by storms

Related to the fact that pTEC isn't strongly affected by the refilling rate, it is also not strongly affected by storms.

pTEC is sensitive to the atmosphere

[Emmert et al., JGR, 2014]

Measured density variations of 20% are common.

Fine lines are 61day averages (Yaw cycle).

SAMI3/MSIS* reproduces the paradox

SAMI3 with the MSIS* modified atmosphere (black dots) reproduces the paradox: refilling rates fall vs F10.7 while pTEC increases vs F10.7.

PTEC does show variation with longitude

pTEC is insensitive to the solar cycle

pTEC commonly contributes 5-10 TECU to TEC.

pTEC is sensitive to atmosphere in a way that reduces its variation with solar cycle.

At night, pTEC can exceed TEC.

References

Emmert, J. T., S. E. McDonald, D. P. Drob, R. R. Meier, J. L. Lean, and J. M. Picone (2014), Attribution of interminima changes in the global thermosphere and ionosphere, Journal of Geophysical Research: Space Physics, 119 (8), 6657-6688, doi:10.1002/2013JA019484

Huba, J. D., and J. Krall (2013), Modeling the plasmasphere with SAMI3, Geophys. Res. Lett., 40, 6-10, doi:10.1029/2012GL054300

Krall, J., J. D. Huba, V. K. Jordanova, R. E. Denton, T. Carranza, and M. B. Moldwin (2016), Measurement and modeling of the refilling plasmasphere during 2001, J. Geophys. Res., 121, 2226-2248, doi:10.1002/2015JA022126

Krall, J., and J. D. Huba (2016), The plasmasphere electron content paradox, J. Geophys. Res. Space Physics, 121, 8924–8935, doi:10.1002/2016JA023008

Lee, H.-B., G. Jee, Y. H. Kim, and J. S. Shim (2013), Characteristics of global plasmaspheric TEC in comparison with the ionosphere simultaneously observed by JASON-1 satellite, J. Geophys. Res. Space Physics, 118 (2), 935-946, doi:10.1002/jgra.50130

Rasmussen, C. E., S. M. Guiter, and S. G. Thomas (1993), Two-dimensional model of the plasmasphere: refilling time constants, Planet. Space Sci., 41, 35-43, doi:10.1016/0032-0633(93)90015-T

Shim, J. S., G. Jee, and L. Scherliess (2017), Climatology of plasmaspheric total electron content obtained from Jason 1 satellite, J. Geophys. Res. Space Physics, 122, 1611–1623, doi:10.1002/2016JA023444