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Development of Forecasting Strategies Is
Driven by Physics and Empirical Evidence

* Laws of physics provide links between solar and
interplanetary magnetic field (IMF) events to thermosphere

and ionosphere variations.
— Available data are insufficient for models calibration.
— Models are most reliable for quiet and regular conditions.

 Ample historical evidences exist to connect solar and IMF
anomalies to ionosphere disturbances.

* Successful forecast must leverage all available information.
— Select features of ionosphere most susceptible to solar and IMF.
— Combine empirical data and models to forecast extreme events.

Extreme Events are Most Valuable and Challenging to Forecast

Introduction to A Space Weather Forecast Test-bed, January 30, 2017 2



Systematic Mining of Historical Space
Weather Data is Necessary

* Large volume of historical space
weather data including solar
imagery can reveal important clues
through systematic analyses.

* Analyses focused on isolated events
may overlook relevant features.

 Machine learning techniques for
image recognition and features
extract are very advanced.

Introduction to A Space Weather Forecast Test-bed, January 30, 2017 3



A Test-bed is an Incubator for Space
Weather Forecasting Strategies

* A database of high quality historical space weather
observations enables training and validation of
forecast strategies.

* A collection of empirical and first principle physics
models, as well as, data analysis tools facilitates
development of new forecast approaches.

* A powerful computational and data storage platform
provides capability to analyze large scale of historical
data and leveraging previously computed
intermediate results.
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* Vision and Objective of the Test-bed
— Paradigm and metrics of forecasting.

 Historical Database

— Raw data and quality control of space data.
— lonosphere data and feature extraction.

* Regression Analyses

— Forecasting strategies based on correlation and auto-correlations.
— Training and validation of regression based forecast.

e Support and continued development of the test-bed

— Potential data sources and other forecasting strategies.
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Forecasting Relies on Connections
Between Past and Future Events

* Forecast variables
are observable.

Forecast Variables

 Datausedin
producing a forecast
may include many
observations that
are not necessarily
important to
forecast.

Data Latency

——— |+ Datalatencyin
past Observations forecast is present.

Introduction to A Space Weather Forecast Test-bed, January 30, 2017 6



Physical Laws Involve Internal State
to Link Present to Future

Data External Drivers ° |\/|0de| based forecast

Assimilation 3 1 system propagates
internal state of the
system.

e Datais used to

» » determine initial state.

Model — Model * Forecasts for external
et drivers are needed.
Data  Models indirectly link
Initial Intermediate Forecast paSt data to forecast.
State State State
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Most Data Mining Approaches
Recognize the Need of Hidden State

Features

Extraction * In an empirical model, all
- : : :
N . relationships are derived
% Weights from historical data.
% V\ * Physical insights help in
] % % = feature extraction and
= ] ] determine the general
= /\a/ \O
% B — Forecast  structures of the model.
1/ /First Layer e Statistics and optimization
Hidden Layer are key in training the

Data models.
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Combination of Physics Based and
Empirical Models is Most Promising

e Space weather forecast is most likely to be successful
when physics based models are complemented with
data driven machine learning tools.

— Physics based models can be used as a filter to extract
most relevant features in data.

— Physics model can also be used as constrain for model
built by machine learning techniques.

— Available observation data anchor the forecast system to
the reality.

 Combined approach is at the cutting edge of
research.
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Forecast Test-bed Provides a
Community Platform for Exploration

Historical Data Records * Development of all
Wf T T forecast systems
.20""“*""‘“% '”‘"f ‘“"“"}' kil requires

combinations of
physical insights
and experiences.

* Quality control and
preparation are

Forecast Validation Data
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T
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X Vz_Velocity Vy_Velocity Vx_Velocity

; needed.
k. * Shared tools and
i Data Latency experiences
° ST R stimulate creativity.
Observations Used First
for Training Forecast Time
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A Test-bed Can Help Forge Consensus
on Values and Metrics of Forecast

 What to forecast can be just as important as how to

forecast.

— Characterization of thermo-ionosphere anomalies through
outliers detection.

— Definition of anomalies based on their impacts which must
be consistently measurable.

* Defining a value for a forecast is useful to help focus
efforts on high impact events.

e Objective metrics is critical for demonstrating
progresses.
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An Easily Accessible Test-bed Attracts
Talents to Space Weather Forecast

* Data mining and machine learning are fields of
research that have potential to impact many areas.

» Skills developed by graduate students in space
weather data analyses and forecast can be useful for
a variety of career paths.

* Interdisciplinary collaborations offer the best chance

for break through.

— Leveraging advances in data sciences benefits space
weather forecasting.
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* Vision and Objective of the Test-bed
— Paradigm and metrics of forecasting.

e Historical Database

— Raw data and quality control of space data.
— lonosphere data and feature extraction.

* Regression Analyses

— Forecasting strategies based on correlation and auto-correlations.
— Training and validation of regression based forecast.

e Support and continued development of the test-bed

— Potential data sources and other forecasting strategies.
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Data Sets in SWFT Are Collected from
Different Sources

e The raw data included in SWFT are from 3 data
providers

— World Data Center for Geomagnetism, Kyoto,
http://wdc.kugi.kyoto-u.ac.jp/dstdir/

— NGDC/NOAA,
ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC DATA/INDICES/KP AP

— Goddard Space Flight Center, Space Physics Data

Facility’s Omniweb:
http://omniweb.gsfc.nasa.gov/form/omni min.html
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Space Weather Data in SWFT Include
Observations and Derived Indices

* Observations of near-Earth solar wind, magnetic
fields and plasma are retrieved from multiple
missions.

e Sun-spot, F10.7 and 3 hour geomagnetic indices AP,
Kp are keys indices used by many models.

e Disturbance Storm-Time (Dst) Index derived from a
network of near equatorial geomagnetic
observatories is expected to be strongly correlated
with thermo-ionosphere disturbances.
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Common Temporal Grid of 3 Hour
Resolution is Used for All Variables

* To facilitate analyses, all data are resampled to 3
hour time resolution.

— High resolution solar wind and magnetic field data are
represented by their summary statistics over 3 hour
intervals such as median, min/max and total variation.

— Daily data such as Sun-spot and F10.7 are constant
throughout the day.

— Hourly Dst is represented by its median, min/max and
total variation over 3 hours intervals.
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Global lonosphere Conditions Are
Represented by GIMs

* At an initial stage the conditions of the ionosphere is
represented by the Global lonosphere Map (GIM)
produced by JPL.

— GIMs are maps of Vertical Total Electron Content (VTEC)
converted from GPS ground receiver data.

— A global map of 1 degree in latitude and longitude is
produced every 15 minutes.

— GIMs have been continuously generated for over 20 years.

* Additional global, regional or local ionosphere
observation can be added to SWFT.

Introduction to A Space Weather Forecast Test-bed, January 30, 2017 17



Only Key Features of GIM Are
Interesting to Forecast

* Due to the sparsity of ground GPS receiver network
used in the derivation of GIM, some artifacts of data

extrapolation exist.

 As 2D VTEC map, a GIM cannot fully represent the
state of ionosphere.

* Only large scale features in GIM can be expected to

be correlated to solar, interplanetary magnetic field
and geomagnetic field disturbances.

e Extraction of key features are crucial.
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Feature Extraction is a Key Step in
Data Mining and Machine Learning

/%%% / . !:ingerpr];i?ﬁ recog?ition
 — is one of the mos
% mature machine

‘ | / learning application.
Z

* Machine entire print
7/
/;

leads to errors due to
variability in prints.

* Features such as ridge
ending, short ridges and

bifurcation are more
robust.
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Physics Based Models Are Useful in
Identifying Features in GIM

* |lon shower near
equatorial region
known as equatorial
anomaly is related to
electric field,
thermosphere wind and
solar radiation strength.

 The signature on a GIM
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recognizable feature in
a VTEC map.
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Equatorial Anomaly Can be
Characterized Systematically

* Key characteristics of the
VTEC in equatorial region
are measured.

Latitude

— Width of gap region
between peaks in north
and south of the equator.

LS ) — VTEC difference between

north and south equatorial
Automated algorithm is developed to

identify the trough of VTEC near peaks

equatorial region between 11:00 and
18:00 local time.

150 160 170 180 190 200
Longitude
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Global or Polar Region Peak VTEC
Values Are Significant

Latitude

GIM for 03-Feb-2003 09:30:00

e Separated records of
VTEC peaks for
different regions
reflect understanding
of different physical
phenomenon in these
places.

VTEC (TECU)

Longtude

Elevated VTEC values in polar region may be
connected to strong geomagnetic and
electrical fields disturbances.
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Long-Term Historical Records of Key
Features Are Essential

Features Extracted from GIM

~wee |1« Compilation and
i extraction of key
e | features from
il e historical data
I e require expertise

in space physics.

* Preparation of
historical records
helps make
precise definition
of features.
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Feature Extraction Tools Are Already
Developed for Coronagraph Analysis

2013/08/27 06:54
SOHO C3 2013-08-27T06:54:00Z

2013/08/27 05:54
SOHO C3 2013-08-27T05:54:00Z Lat: 7°,

Lon: 0°, 215.40Rs From Sun.

Angle from plane of sky to CME (pasitive toward spacecraft): 10
°

e StereoCAT and similar tools are routinely used to
extract CME speed and other features.
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Extreme Conditions Are Often
Defined by Their Unusualness

* In analyzing effects of strong solar or IMF
disturbances on thermo-ionosphere it is common to

identify the effects by comparing ionosphere
measurements during the storm to those before and

after.

— Precise definition of thermo-ionosphere anomalies may
not exist.

e Characterizing unusualness requires unbiased
comparison to other measurement points.
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Identification and Detection of Outliers
Are Parts of Machine Learning

* Unsupervised machine learning can be effective in
discover useful features.

* Clusters in data records are important clues.

— Different physically meaningful metrics can be used to
measure the “distance” between data points.

— Distance to nearest n neighboring points, Cluster Radius,
provides an indication to the “unpopularity” of a data
point.

— The number of neighbors within a radius r, Popularity,
represents similar information.
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Computation of Cluster Radius
Requires Intensive Processing

VTEC

i Ea 1+ Comparing daily
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Large Number of Metrics Are Used to
Identify Relevant Features

* All proposed metrics are motivated to capture
physically meaningful aspects of the state of
ionosphere.

— Absolute VTEC difference;
— Difference in latitude gradients;
— Difference in key local time or latitude regions.
* A total of 12 different metrics are used to
characterize the unusualness of a VTEC map.

— ldentification of the most useful metrics may lead to
reduction in the number of metrics and optimization.
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* Vision and Objective of the Test-bed
— Paradigm and metrics of forecasting.

 Historical Database

— Raw data and quality control of space data.
— lonosphere data and feature extraction.

 Regression Analyses

— Forecasting strategies based on correlation and auto-correlations.
— Training and validation of regression based forecast.

e Support and continued development of the test-bed

— Potential data sources and other forecasting strategies.
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Machine Learning Consists of Mining
Historical Data for Useful Clues

Features o : .
 Extraction I\/Iz.;my different techniques
n exist.

Trained . .
[ ] Weights — Different representations of
% - | relationship between input
[] %% and output variables.
% [ ] [ ] [ ] — Different optimization
] %% criteria.
% u [ Forecast  _ Different technique for
"1/ /First Layer searching for optimal
Hidden Layer parameters.

Data * All are regression analyses?
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Correlations Between Historical Data
Are Fundamental

* Data can be used for thermo-ionosphere forecast for
time t, produced at time t, include all measurements
of solar, IMF, geomagnetic and thermo-ionosphere
up totimet,,.

— The delay d=t,-t , is referring to ask data latency which
may be different for different measurement.

— The difference f=t,-t, is the advance for the forecast. Zero
advance is referred to as nowcast.

e Correlations in historical data of two measurements
separated by time difference of d+f are useful.
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Fading Memory in Space Weather
Helps Limit Correlations in Time

* Current set of space and ionosphere data include
128 variables at 3 hour resolution.

 Using a5 day interval, there are 40x128=6450
components for correlation analyses.

* Precise definition of training data, forecast data and
validation data must be established.

— Training data: data available before t ; used to find optimal
regression parameters to be used for a forecast.

— Forecast data: data available at time t_; and within fading
memory interval.
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Validation of Forecast Strategy Must
Respect Data Availability Constraints

* All regression analyses for finding optimal forecast
parameters must only use data available before t ..

* Validation of forecast strategy consists of comparing

the forecasted value vy, ... to measured value v, .,
for time t,.

* Regression parameters can be updated as time ¢ is
moving forward.

— Instead of a fixed “empirical” forecast formula, continuous
regression analyses are able to catch new trend in data.
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Large Number of Forecasting
Strategies Can be Explored

Regression residual for 1 day forecast compared to validation of multiday forecasts
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Systematic Validation of Linear Regression
Based Forecast is Performed

e Validation data for forecast of all 169 variable with d
+f ranging from O to 4 days are computed for 2011.

e Large number of automated analyses are performed
and the results are being analyzed.

— Initial results show encouraging performances.

— The results are preliminary and require further and close
examination.

— Statistical analyses of the validation data in term of True-
Positive Rate vs. False-Positive rate must be performed.
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Forecast Performance for Maximum VTEC in Southern

Hemisp
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Increase of Number of Parameter
May Not Lead to Improvement

* Using only
ionosphere
data seems
produce best
results.

* |ncreased
degree of
freedom also
Increase
instability.
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* Vision and Objective of the Test-bed
— Paradigm and metrics of forecasting.

 Historical Database

— Raw data and quality control of space data.
— lonosphere data and feature extraction.

* Regression Analyses

— Forecasting strategies based on correlation and auto-correlations.
— Training and validation of regression based forecast.

e Support and continued development of the test-bed

— Potential data sources and other forecasting strategies.
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SWFT Can Only Succeed With
Community Participation

* Talent from all participants in space weather
research are needed.
— Data provider must supply quality controlled data.
— Space physicists can help identify relevant features.

— People affected space weather must contribute in the
definition of value of a forecast.

— Young data scientists can use their knowledge to
contribute in the discoveries in space weather.

 We should seek broad community guidance and
acceptance of the SWFT.
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Statistical Techniques Have Always Been
Crucial Tools for Space Weather Forecast

e Calibration of first-principle based model
often requires data currently unavailable.

Statistics based system identification,
regression and machine learning
techniques help discover empirical

o — connections between solar and space
L observation and ionosphere anomalies.
rﬁ | * Forecast comes with statistical confidences

e derived from historical data.

LWS Midterm Review, Mountain View, CA, May 24, 2016 2
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Statistical Methods Provide Key Bridges to
Fill Gaps Between Models

Statistical Model
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Our Efforts Cover Several Important and
Practical Aspects of lonosphere Forecast

* Discovering hidden dynamics in space weather
observations for forecasting solar and space environment
(Kayo Ide, Eugenia Kalnay, Erin Lynch and Surja
Sharma,University of Maryland, College Park)

e Statistical characterization of ionosphere anomalies and
their connections to space environment anomalies via
regression analysis (G. Rosen & C.W,USC)

 Machine learning approach for direct forecast of
ionosphere anomalies using solar and space weather
observations(G. Rosen & C.W,USC)

Analyses of Historical Solar and lonosphere Data Revealed Important Correlations
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Forecast Space Observation Using Data
Driven Dynamic Model

Nearest Neighbors (NN)

Locate nearest neighbors of analysis ensemble
members to serve as analogs to make forecaj:ts

“Model” Forecast

Use a dense data set of points on the attractor
(model) to advance NN analysis ensemble to the

end of the analysis window \—) .

///;

Observations

Observations of a single variable (i.e. the AL
index) become multivariate when embedded

Kayo Ide, Eugenia Kalnay, Erin Lynch and Surja Sharma,University of Maryland, College Park
LWS Midterm Review, Mountain View, CA, May 24, 2016

Analysis

Analysis ensemble members computed using the
ETKF are the best estimates of the true state, but
do not lie on the attractor j




AL index (nT)
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Empirical Technique Enables Forecasts of
Magnetic Field Variations at Ground Stations

* Twelve ground-based
magnetometer stations
provide data to the World

— Data Center for the

——Persistence

— NNETKF Forecast construction ofthe AL indices

IIIIIlI]

| |
51 5/2 5/3 5/4

e Eightstations have publicly
available data.

* 40 minute forecasts of four of

NN ETRF Forecast i the fluctuationsin magnetic

Persistence

P I

Foreélgst duraﬁi)ion (mi;‘l‘?uteS) oo 2 field readingS Of fOUF Of the

stations duringthe April 2011

HSS event
* Forecastsof the eight stations with available data were

performed simultaneously
Kayo Ide Eugenia Kalnay, Erin Lynch and Surja Sharma,University of Maryland, College Park




Unambiguous Characterization of
Anomalies in the lonosphere is Essential

T = I * 16 different metrics are used to

measure the difference between
two days of GIM/VTEC maps.

1 B Radius of the cluster of nearest n
I neighbors is used to characterize
the unusualness of GIM/VTEC

Identified Active Days
8 L — u v T T T v T °
————Distance o Nearest 10 Neighbors
o Outliers.
S B ' I I l a S O r a IV e l I a
7k 4 [ ]
6| H

Significant correlation is
M observed to identified solar and
| space anomalies.
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fﬂé
L
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Extensive Solar, IMF and Other Space
Weather Indices Are Analyzed

Solar and space Data

* Using solar, IMF and other space
— Bartels Number,

weather data directly avoids _ Bartels Phase
delays of intermediate analyses. — Kp,Ap,Cp,
. ] — SunSpot,F107
* |dentification of apparent _ Dst
correlation between space — Bx, By,Bz
th dat di h — Vx, Wy, Vz
weather data and ionosphere _ Proton density
variability indices is inherently — Temperature
— Flow pressure
useful. o
* Analyses used 2011-2014 data. — Pen
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Deviation from Mean in Multiple of Standard Deviation

Correlation Between H1-lonosphere Variability and Dst for 2011 Data
1 ! 1 I I 1 I 1 I I 1

cluster_abs H1_max
Dst_Min

| 1 1 1 1 1 1 | 1 1 1
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov  Dec
Meonth

olx,y) = Ziea (= Dy - 9) _ i a
) - _ mxln Vi — z ajxj,k
(n-1)a,0, L T
Correlation Coefficient Regression Problem

2

Correlation Coefficients Measure the
Coincidence of Changes in Two Variables

Substantial correlation is
observed between the
minimum value of Dst
and many ionosphere
variability metrics.

Negative correlation is
expected since negative
values of Dst correspond
to disturbance
conditions.
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Predicted lonosphere Variablility

o

Regression Analyses Allows Quantification
of Forecasting Errors

Prediction of H1 Cluster Radius for 2013 Data

False Positive
Type | Error

% *
* %

True Posjtive

*

Threshold
. #:{*
_ True Nigégl

»*
Va

False Negative
Type |l Emor

Klegéttivelao ut&@rﬁéd onasphore Positive Outcome8
Netagive Outcomeand Psiive Predicion ~ Postve Qtcome and Pricon

Negative Outcome

LWS Midterm Review, Mountain View, CA, May 24, 2016

Positive Outcome

Positive Prediction

Negative Prediction

Regression analyses
produce similar quality
of prediction of
ionospherevariability.

Many components of
space variables are
strongly correlated.

Redundancy of space
variables leads to
instability of
regression coefficients.
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Regression Model Trained with 2011
Shows Reasonable Predictability
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Distance in VTEC
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Using Machine Learning Techniques to
Construct Anomaly Forecasting Model

Use logistic regression to build a

binary classifier

* Dependent or Response Variable:
GIM TEC maps labeled 1 if an
outlier and /abeled O if not an
outlier.

* Independent or Predictor
Variables: a selection from 60
observed space weather
parameters or features.

* Use Binomial Logistic Regression

to fit data from 2011.
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Validation Against Historical Data Allows
Quantification of Statistical Confidence

True Positive Rate
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Future Research Efforts

 Expanding the Kalman filter approach for the
forecast of solar-wind and Al indices
— Solar-wind forecast can be used by first principle models

 Develop and evaluate systems for forecasting of
ionosphere disturbance using solar and space
observation with historical data

— Derive cluster radius using only data available prior to
prediction

— Update regression analysis continuously
— Develop forecast skill measurements
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