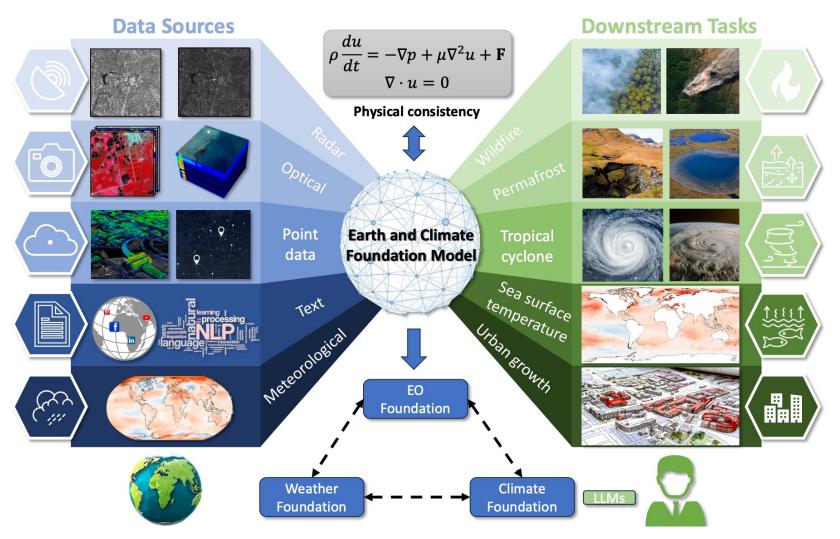


AI Foundation Models for Whole Atmosphere Climate: Development and Applications

Wenjun Dong^{1,2}


Colleagues: David C. Fritts^{1,2}, Thoms Lund², Alan Liu¹, Han-Li Liu³, Jonathan Snively², and Jia Yue⁴

¹Center for Space and Atmospheric Research (CSAR), Embry-Riddle Aeronautical University, Daytona Beach, USA

²Global Atmospheric Technologies and Sciences (GATS), Boulder, USA ³High Altitude Observatory (HAO), National Center for Atmospheric Research (NCAR)), Boulder, USA ⁴NASA Goddard Flight Center

> June 5, 2024 CCMC Workshop, Maryland on June 3-7, 2024

AI Foundation Model: Any model that is trained on broad data (generally using self-supervision at scale) that can be adapted (e.g., fine-tuned) to a wide range of downstream tasks.

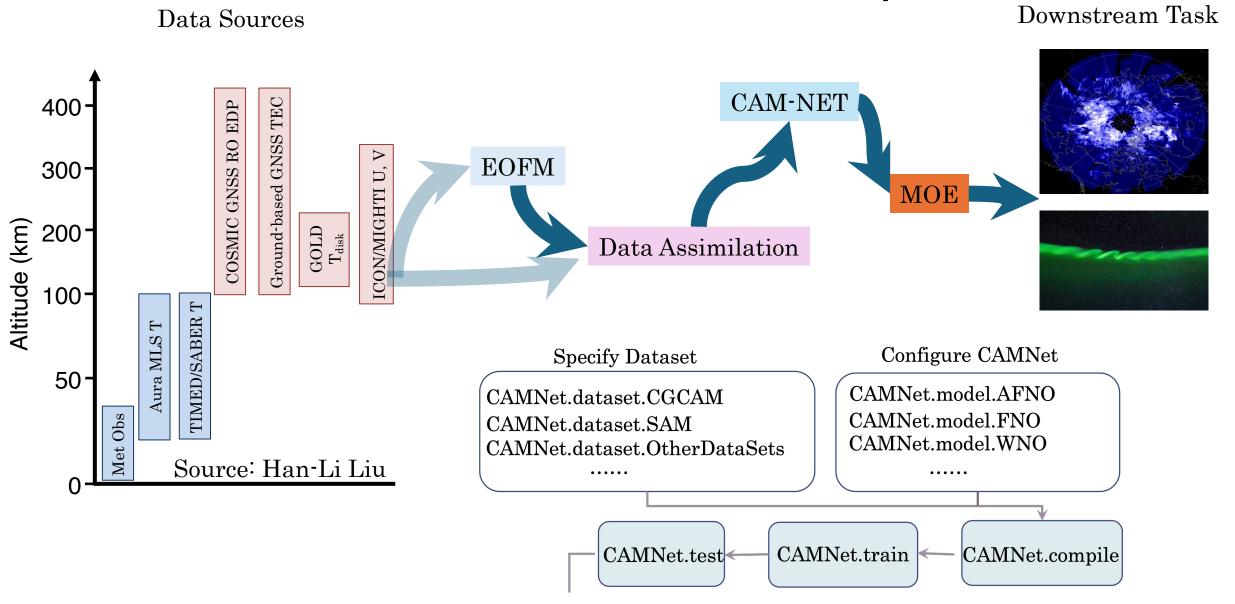
Source: Zhu et al., 2024

Earth Foundation Model

Type	Definition
Earth Observation	Process and analyze data collected from Earth observation systems, such as satellites, radios, and ground-based sensors.
Weather	Predict short- to medium-term weather conditions based on atmospheric data. These models use meteorological data, including historical weather records and real-time observations, to forecast weather patterns and extreme weather events, providing essential information for weather prediction and nowcasting.
Climate	Aim at projecting long-term climate trends and changes based on historical and simulated climate data. These models integrate various data sources, including climate model outputs and historical climate records, to predict future climate scenarios and inform policy and planning for climate change mitigation and adaptation.

Recent Weather and Climate Foundation Models

Model Architecture	Model	Year	Affiliation	Temporal Resolution	Time Span	Spatial Resolution	Model Size (# params)	Cluster Size	Training Time
GNN	GraphCast	2022.12	Google	6 hrs	10 days	0.25°	36.7M	32 TPU v4	28 days
Transformer	FourCastNet	2022.02	NVIDIA	6 hrs	8.3 days	0.25°	433M-2.19B	64 A100	0.7 days
	Pangu	2022.11	Huawei	1 hr	7 days	0.25°	256M	192 V100	15 days
	ClimaX	2023.01	Microsoft	6 hrs	30 days	0.25°	108–111M	80 V100	3 days
	FengWu	2023.04	Shanghai AI	6 hrs	14 days	0.25°	427M	32 A100	17 days
	W-MAE	2023.04	Chengdu	6 hrs	16 days	0.25°	96.5M	8 A800	9.3 days
	FuXi	2023.06	Fudan	6 hrs	15 days	0.25°	1.56B	8 A100	1.5 days
	Stormer	2023.12	UCLA	6 hrs	10 days	1.4°	100–600M	128 A100	1 day
	FengWu- 4DVar	2023.12	Shanghai AI	6 hrs	10 days	0.25°	427M	32 A100	17 days
	FengWu-GHR	2024.01	Shanghai AI	6 hrs	10 days	0.09°	4B	16 A100	3 days
	CaFA	2024.05	CMU	6 hrs	7 days	1.5°	200 M	4 A6000	7 days
	AUORA	2024.05	Microsoft	6 hrs	10 days	0.25°	1.3B	32 A100	17 days
Diffusion	SEEDs	2023.06	Google	N/A	16 days	2°	114M	16 TPU v4	0.75 days
	GenCast	2023.12	Google	12 hrs	15 days	1°	60M	32 TPU v4	5 days
Differential GCM	NeuralGCM	2023.11	Google	3.75–12 mins	10 days	0.7–2.8°	115–311M	128 TPU v5e	10 days


Note: Please see the last page for the related publication list

Recent Weather and Climate Foundation Models

The first GCM combining a Pushes skillful global medium-range A factorized-attention-based model ML models that are now competitive differentiable solver for atmospheric weather forecasts beyond 10 days tailored for spherical geometries, with traditional weather forecasting dynamics with machine learning lead time. reducing the quadratic complexity methods components. ML can be trained using of attention to linear The first AI model running at heterogeneous datasets spanning Uses cascade machine learning to 0.09° horizontal resolution. First AI Weather different variables, spatial-temporal extend skillful global medium-range coarse-resolution models Foundation Model coverage, and physical groundings weather forecasts beyond 15 days could be fine-tuned to achieve *I*high resolution. *→* FourCastNet GraphCast ClimaX FengWu FuXi NeuralGCM FengWu-GHR CaFA 20222023 2024 Pangu FengWu-4DVar W-MAE SEEDs GenCast **AUORA** Integrates data assimilation with AI Provides an alternative to current A 3D transformer equipped with operational weather forecasting models earth-specific priors, showing the paradigms, allowing computational importance of embedding earth Can be pre-trained on resources saved by the statistical location in machine learning models heterogeneous emulator to increase the resolution of datasets and fine-Demonstrates the physics-based model tuned for specific A probabilistic weather feasibility and potential tasks model with greater skill of implementing preand speed than the top training techniques in operational mediumweather forecasting Key Features: range weather forecasts.

- ➤ AI models have demonstrated the potential to surpass traditional numerical physical models in accuracy while achieving several orders of magnitude increases in speed.
- ➤ AI models have been shown to successfully integrate with data assimilation techniques.
- ➤ AI models can handle heterogeneous datasets, including observations, simulations, and reanalysis datasets.

Unified Framework for Whole Atmosphere Model

Get Started with CAM-NET Using Just a Few Lines of Code

```
import os
import torch
import camnet
```

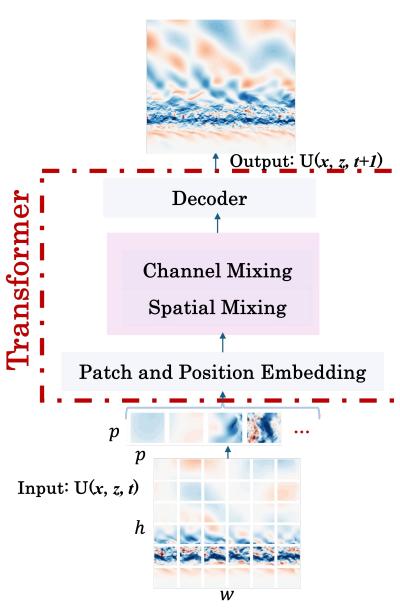
Step 1: Import CAM-NET package

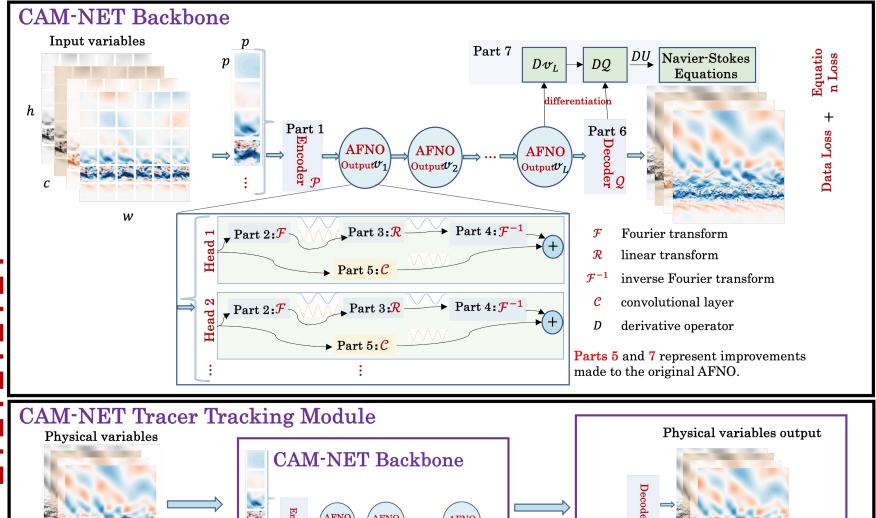
```
train_loader, test_loader = camnet.datasets.cgcam(data_path, batch_size = 10, T_in = 10, T_out = 40, type = "1e-3", sub = 1)
```

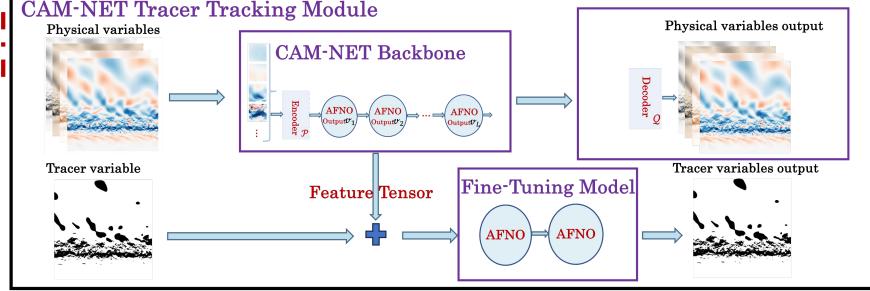
```
ep = 50; o = 20; m = 12
```

Step 3: Configure model architecture and architecture parameters

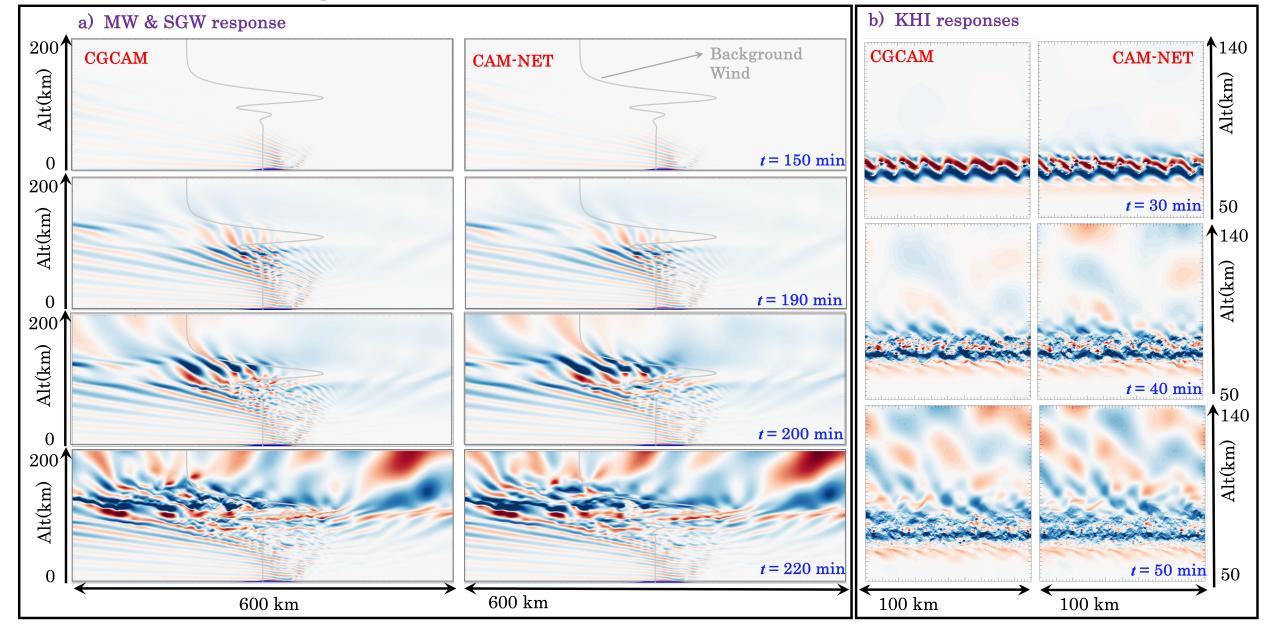
```
camnet_model = camnet.model.fourier(backbone = "FNO2d", o = o, m = m, t_in = 10, device = device) camnet_model.compile()
```

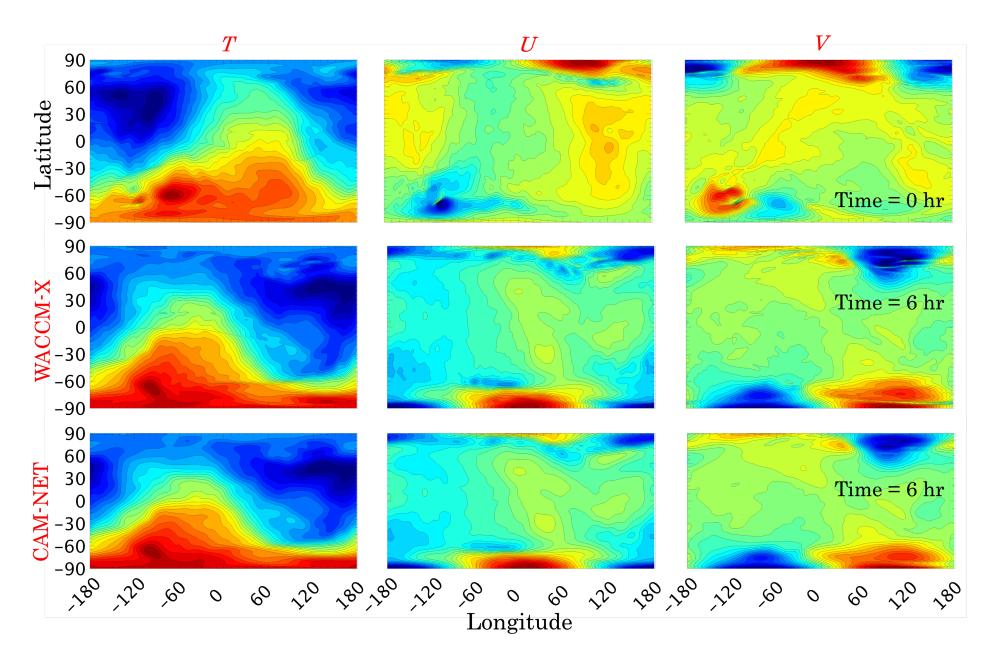

Step 4: Configure training parameters and start training


```
camnet_model.opt_init("Adam", lr = 0.001, step_size=100, gamma=0.5)
camnet_model.train(epochs=ep, trainloader = train_loader, evalloader = test_loader)
```


```
time_error = camnet_model.test(test_loader, path = fig_path, is_save = True, is_plot = True)
```

Step 5: Test Outputs


CAM-NET.AFNO



Example: Highly-Nonlinear Wave Dynamics

Example: WACCM-X and CAM-NET for Surface Variables: A Demo

Future Development

> Train CAM-NET on WACCM-X (+DART)
Simulation Data

Use simulation data from WACCM-X(+DART) to train the CAM-NET model.

Develop Mixture-of-Experts for Downstream Tasks Implement Mixture-of-Experts models using techniques such as LORA (Low-Rank Adaptation), feature extraction, or other fine-tuning methods to enhance performance on specific downstream tasks.

> Integrate JEDI+ AI Models for Data
Assimilation

Develop and integrate JEDI with AI models to enable advanced data assimilation features in AI foundation models.

Weather and Climate Foundation Model Paper List

- 1. Pathak et al., (2022), FourCastNet: A Global Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators, https://arxiv.org/abs/2202.11214.
- 2. Lam et al., (2022), GraphCast: Learning skillful medium-range global weather forecasting, https://arxiv.org/abs/2212.12794.
- 3. Bi et al., (2023), Accurate medium-range global weather forecasting with 3D neural networks, https://www.nature.com/articles/s41586-023-06185-3.
- 4. Chen et al., (2023), FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond 10 Days Lead, https://arxiv.org/abs/2304.02948.
- 5. Chen et al., (2023), FuXi: a cascade machine learning forecasting system for 15-day global weather forecast, https://www.nature.com/articles/s41612-023-00512-1.
- 6. Man et al.(2023), W-MAE: Pre-trained weather model with masked autoencoder for multi-variable weather forecasting, https://arxiv.org/abs/2304.08754.
- 7. Kochkov et al. (2023), Neural General Circulation Models for Weather and Climate, https://arxiv.org/abs/2311.07222.
- 8. Nguyen et al., (2023), ClimaX: A foundation model for weather and climate, https://arxiv.org/abs/2301.10343.
- 9. Nguyen et al., (2023), Scaling transformer neural networks for skillful and reliable medium-range weather forecasting, https://arxiv.org/abs/2312.03876.
- 10. Xiao et al., (2023), FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation, https://arxiv.org/abs/2312.12455.
- 11. Han et al., (2024), FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather Forecasting, https://arxiv.org/abs/2402.00059.
- 12. Li et al., (2024), CaFA: Global Weather ForeCasting with Factorized Attention on Sphere, https://arxiv.org/abs/2405.07395.
- 13. Li et al., (2024), Generative emulation of weather forecast ensembles with diffusion models, https://www.science.org/doi/10.1126/sciadv.adk4489.
- 14. Price et al., (2024), GenCast: Diffusion-based ensemble forecasting for medium-range weather, https://arxiv.org/abs/2312.15796.
- 15. Bodnar et al., (2024), Aurora: A Foundation Model of the Atmosphere. https://arxiv.org/abs/2405.13063.