Opening EPREM: Progress toward an open-source coupling-agnostic model

Matt Young (he/him)
Nathan Schwadron

Ron Caplan Jon Linker Erika Palmerio

Chris Light

2024 NASA CCMC Workshop

Model Overview

The Energetic Particle Radiation Environment Model

Solves the focused transport equation on linked nodes that move with the frame of the solar-wind plasma.

The Energetic Particle Radiation Environment Model

Solves the focused transport equation on linked nodes that move with the frame of the solar-wind plasma.

$$\left[1 - \frac{\left(\vec{V} \cdot \hat{b}\right)v\mu}{c^2}\right] \frac{df_s}{dt} \qquad \text{(convection)}$$

$$+ v\mu \hat{b} \cdot \nabla f_s \qquad \text{(streaming)}$$

$$+ \frac{\left(1 - \mu^2\right)}{2} \left[-v\hat{b} \cdot \nabla \ln B - \frac{2}{v}\hat{b} \cdot \frac{d\vec{V}}{dt} + \mu \frac{d\ln\left(n^2/B^3\right)}{dt}\right] \frac{\partial f_s}{\partial \mu} \qquad \text{(adiabatic focusing)}$$

$$+ \left[-\frac{\mu}{v}\hat{b} \cdot \frac{d\vec{V}}{dt} + \mu^2 \frac{d\ln\left(n/B\right)}{dt} + \frac{\left(1 - \mu^2\right)}{2} \frac{d\ln B}{dt}\right] \frac{\partial f_s}{\partial \ln p} \qquad \text{(cooling)}$$

$$= \frac{\partial}{\partial \mu} \left(\frac{D_{\mu\mu}}{2} \frac{\partial f_s}{\partial \mu}\right) + q\left(\vec{r}, p, t\right) \qquad \text{(pitch-angle scattering and injection)}$$

The Energetic Particle Radiation Environment Model

Solves the focused transport equation on linked nodes that move with the frame of the solar-wind plasma.

The Energetic Particle Radiation Environment Model

Solves the focused transport equation on linked nodes that move with the frame of the solar-wind plasma.

Requires knowledge of

- magnetic field (B)
- velocity field (V)
- density (n)

The Energetic Particle Radiation Environment Model

Wind

Applies **B**, **V**, and n consistent with a Parker spiral

Shock

Solves the Rankine-Hugoniot equations for **B**, **V**, and n

The Energetic Particle Radiation Environment Model

EPREM and STAT

- The SPE Threat Assessment Tool (STAT) was jointly developed by UNH and PSI.
- STAT results are available through CCMC.
- STAT drives EPREM using B, V, and n from PSI's MAS simulation within the CORHEL framework.
- EPREM within STAT is intrinsically coupled to MAS/CORHEL but is functionally the same as open-source EPREM.

Code Updates

Ideal Shock MHD: Old version

Ideal Shock MHD: New version

Proton Flux v. Energy: Old version

Proton Flux v. Energy: New version

Current Progress and Next Steps

Ideal Shock Proton Fluxes

Ideal Shock Proton Fluxes

Why Open EPREM?

Historically, there have been multiple closedsource implementations of EPREM with high redundancy and model-specific MHDcoupling logic.

Why Open EPREM?

Our goal is to develop a **single open-source implementation** of EPREM with **model-agnostic** MHD-coupling logic.

Why Open EPREM?

Our goal is to develop a **single open-source implementation** of EPREM with **model-agnostic** MHD-coupling logic.

work in progress

EPREMpy

- path to EPREM output
- name of config file

→ dataset

observers

parameters

physical units,
named dimensions,
support for numpy and
built-in operations, etc.

observable quantities

runtime values

Plans, Hopes, and Dreams

- Implement a magnetic switchback model
- Runs on Request: Coming Fall 2024
- Improve the ideal-shock model
- Support multiple forms of the seed spectrum
- Revive neglected EPREM features
- Develop a test framework

(not to mention library updates and bug fixes...)

Acknowledgements

NASA O2R

80NSSC20K0285

NASA LWS Strategic Capabilities

80NSSC22K0893

NSF Solar-Terrestrial

2325313

Thank You

Matthew.Young@unh.edu

https://gitlab.com/open-eprem/eprem

https://gitlab.com/open-eprem/eprempy

https://gitlab.com/open-eprem/eprem-analysis

pip install eprempy