
GITM and Aether
Aaron Ridley



The Global Ionosphere Thermosphere Model
● 3D geographic grid structure

○ Longitude, Latitude, Altitude (not pressure)
○ Fully parallel with 2D block-based domain decomposition
○ Typical resolution of 4° x 1° (lon x lat) on 200 processors; about 4x faster than 

real time
■ Highest resolution runs are 2° x 0.5° (lon x lat) on 800 processors

● Each file is about a GB, so this is complicated
■ Stretched grid in altitude at about ~1/3rd "scale height" (100 - ~500 km)

○ Can run in 1D (fixed longitude/latitude, rotating with the Earth - debugging 
mostly)

○ Can run in limited longitude / latitude domain, with different horizontal 
boundary conditions

● State Variables:
○ 11 Neutral Densities (O, O2, N2, N(4S), NO, He, N(2D), N(2P), CO2, O(1D))
○ 8 Ion densities (O+(4S), O2

+, N2
+, N+, NO+, O+(2D), O+(2P), He+)

○ Neutral winds - Bulk horizontal velocities, individual vertical velocities
■ Full vertical momentum equation solved for each species
■ Vertical winds include friction terms between the different species

○ Bulk ion velocities (parallel + perpendicular), electron velocity (ExB drift)
○ Neutral, (full) Ion, and (full) Electron temperatures

Snapshot of mass density from GITM + GITM-GOCE 
comparisons during March 2013 storm



Equation Sets
● Neutrals are modeled with the Navier-Stokes equations (mostly)

○ Many terms are bulk and not individual
○ Lots of source terms

■ Chemistry, Coriolis, ion drag, geometry effects, eddy diffusion, EUV, 
aurora, frictional heating, heat transfer, chemical heating, (NO, CO2) 
radiative cooling

○ Full momentum equation allows capture of acoustic waves
■ Limits time-step to a few seconds to capture wave speeds

● Ions are modeled with a modified equation set
○ Continuity can include divergence term, but it is on a switch

■ Vertical boundary conditions for ions are painful
■ Field-lines extend above domain and really need a reservoir of plasma
■ Divergence brings need to message pass field-aligned ion velocities
■ Need to advance field-aligned ion velocity implicitly

○ Momentum equation is solved both along the field and across the field
■ Bulk only, which is a disadvantage; especially along field line

○ Fully self-consistent electrodynamics dynamo in low-latitude region
■ Implemented from Richmond paper

○ Ion and electron temperatures are "full" equations and not steady-state 
approximations

■ Electron heating/cooling is extremely complicated and "fast"
■ Both frictional heating (Vi-Vn)2 and heat transfer (Ti-Tn) included both 

ions and neutrals

Electron densities at 300 km on March 17, 2013 20 UT



High Latitude Drivers

● Need to set the electric field at high 
latitudes, lots of ways to do this

○ Empirical models, such as Weimer
○ Output from other models (SWMF)
○ Data assimilation models like AMIE

● This is applied as the electric potential at all 
cell centers

○ Gradient to derive the electric field
○ Zero out electric field along field-line

■ Not doing this caused a lot of problems for 
many years

● Aurora specified at top of the atmosphere
○ Empirical models

■ FTA Model - AE driven
○ Output from other models (SWMF)

● Auroral energy deposition code 
computes ionization vs altitude

○ a bunch of mono-energetic beams
○ Similar to EUV energy deposition 
○ Fang electron and ion deposition



Validation with GOCE Winds

● Year long comparison between 
GITM and GOCE winds - 2013

● Published in 
https://agupubs.onlinelibrary.wile
y.com/doi/10.1029/2021SW0029
22

● Matches very well in polar cap
● Winds too strong at low and 

mid-latitudes
● Auroral zone winds too low at low 

activity, but too high at high 
activity

○ Consequences for frictional heating

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021SW002922
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021SW002922
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021SW002922


Validation with GOCE Rho

● Year long comparison between 
GITM and GOCE mass densities 
- 2010

● Use this to test robustness of 
code and see that everything is 
working ok.



Aether - a new model of the ionosphere/thermosphere

● Currently in development
○ https://github.com/AetherModel/Aether
○ You can work on the development if you would like!

● C++
● Primary values:

○ Flexibility
○ Ease of use and development
○ Clean code that is “professionally” developed
○ Open development

https://github.com/AetherModel/Aether


The Team
● Aaron Ridley - UM

○ Project lead, Aether architecture and thermosphere development, school and resources development
● Jeff Anderson - NCAR

○ DART lead, Aether data assimilation, uncertainty quantification
● Jared Bell - GSFC

○ Aether numerical scheme and grid system development, Aether verification
● Alex Glocer - GSFC

○ Aether ionosphere and general model development, Aether validation and verification
● Angeline Burrell - NRL

○ Aether coding standards, Aether post-processing codes, Aether validation, teaching resources
● Meghan Burleigh - NRL

○ Aether architecture, ionosphere development, school and resources development
● Qusai Al Shidi - UM

○ Aether architecture, coding standards, school and resources development
● Ben Johnson - NCAR

○ DART / Aether interface development, data assimilation, uncertainty quantification
● Chen Wu - UM

○ Post Doc, working on Auroral models
● Undergrad Students @ UM

○ 2021: Rutvik Marathe, Olivia Doty, Maca Peralta, Keegan O’Connor
○ 2022: Michael Rinaldi, Ashwin Kumar, Kate Stamp



Collaborative workflow
● The Aether community uses a standard GitHub workflow:

○ New work is performed on `develop`, while stable code lives on `main`
■ Internal or external developers create new branches from `develop` and when ready, create pull 

requests that merge the code into `develop`
■ At least one approval is required before a pull request can be merged
■ Pull requests undergo automated acceptance testing using Github Actions for both MacOS and Linux 

is set up.
○ Dependencies are incorporated into the workflow using Docker
○ Questions, problems, and tasks are recorded as GitHub Issues

● Workflow resources:
○ Contributing guidelines are provided to encourage community contributions

■ Contributing.md (main directory)
■ Online documentation 

(https://aetherdeveloper.readthedocs.io/en/latest/contributing/contributors-guide.html)
○ Code style conventions have been adopted to improve clarity with multiple contributors
○ Standard linting resources are noted and the appropriate style enforced (AStyle!)
○ Commit messaging style ensures programming progress is easy to follow
○ In-code documentation, compatible with Sphinx and rST, is required

● Adaptability:
○ The workflow may be changed or clarified as issues or questions occur
○ To make changes, a consensus must be reached within the current development team
○ Community developers may bring up issues or questions through GitHub Issues



Flexibility

● Grid determined at run time (don’t need to recompile)
○ 1D, 2D, 3D possible

● Swappable features
○ Chemistry specified by CSV file
○ EUV specified by CSV file (i.e., number of wavelengths, cross sections, etc.)
○ Planetary characteristics specified by CSV file

■ Can run different planets without recompiling
■ Can change species to consider (neutrals and ions) without recompiling (goal)

○ Collision terms specified by CSV file
● json inputs
● Output flexibility

○ netCDF, binary
○ Developer puts output variables into generic holding place, and output system takes those and 

writes to requested formats



json inputs
json is a standard 
format, with 
libraries available 
to read/write

Use a default.json 
file to set defaults 
in code

Use aether.json to 
perturb defaults

Developers can 
add variables 
without having to 
add code at all!

json is very similar to python dictionaries, 
with keys and values within the code, 
e.g.:
settings["Planet"] = "earth"
settings["Euv"]["Model"] = "euvac"



earth.in

This is still in the old-school method, so need to 
update.

Set species to model (string values are super 
important here, need to match with all other CSV 
files!), with masses, vibration, conduction, whether 
to advect, and lower boundary condition

Set initial temperature condition

Will swap out BCs and ICs with MSIS, but this is 
easy for now



Planetary Characteristics

CSV file sets: orbital characteristic about the sun, rotation (long -> local time 
needs work), mass, equatorial and polar radius, dipole characteristics

All planets in system, can easily make more bodies



Chemistry
CSV file sets sources, losses, rates, branching ratios, heating

Working on incorporating temperature dependent rates (student)

Currently have two chemistry files of varying complexity

System for reporting chemical equations so user can see what is used



Collisions

Resonant and non-resonant 
ion-neutral collision frequencies

Resonant can be temperature 
dependent (since they are)

Code detects "R" and swaps in 
resonant collision frequencies

Used in ion drift calculations



EUV

Wavelength ranges

Method to calculate spectra

Absorption cross sections

Ionization cross sections

Still need more 
characteristics, but a good 
start (e.g., nighttime EUV, 
photoelectron augmentation 
to ionization)



Grid Systems

● Both spherical and CubedSphere grids 
implemented

● Quad-tree domain decomposition 
implemented

○ Very simply at this point
○ Only uniform grid allowed now

● Outputs in blocks so plotting is more 
complicated



Some Examples - 2° resolution



Potential and Aurora



Summary

● GITM
○ Have made a few changes to increase stability and improve performance
○ Latest version on github is up-to-date

● Aether
○ New model of thermosphere / ionosphere
○ Extreme flexibility in physics and specifications
○ Spherical grid and CubedSphere grids available
○ Still in development


