Drag-Based Ensemble Model (DBEM)

- 2. Institute of Physics, University of Graz, Austria
- 3. Faculty of Engineering, University of Rijeka, Croatia
- 4. NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

DBEM with ensemble and synthetic measurements

Dumbović et al., ApJ, 2018

INPUT

Ensemble modeling applied to Drag-based Model (DBM, Vršnak et al., 2013, SolPhys)

DBEM OUTPUT

0.002

0.000

450

550

v (km/s)

RUNS

nm² combinations (ensemble members) nm² DBM runs

2D DBM (Žic et al., 2015, ApJ)

- hit or no hit
- transit time
- arrival time
- arrival speed

0.02

0.00

60

TT (hours)

Performance and comparison with ENLIL

 Based on sample: Mays et al., 2015, SolPhys

 Both ENLIL and DBEM are not far away from the line of perfect reliability

Main points - DBEM

Dumbović et al., ApJ, 2018

- Offers probabilistic forecasting of CME hit chance, transit time and arrival speed for different targets in solar system
- Reliable and simple model
- Runs very fast (more than 1000 DBM runs per sec on a single CPU)
- ENLIL and DBEM perform similarly
- Fast CMEs predicted to arrive too early for both DBEM and ENLIL
- Suitable for implementation as on-line (web) forecasting tool:
 DBEMv1 and DBEMv2 ESA Expert Service Group for Solar & Heliospheric Weather (swe.uni-graz.at)

c) prediction errors for TT (h)	DBEM	ENLIL
mean error (ME)	-9.7	-6.1
mean absolute error (MAE)	14.3	12.8
root mean square error $(RMSE)$	16.7	14.4

On-line DBEMv1 tool with synthetic measurements

- Needs as input only one CME measurement with estimated uncertainties
- Uses synthetic measurements for all 6 input parameters (T, v, φ, λ, w, γ)
- Needs certain number of synthetic measurements (m > 9) to perform reliably - large number of DBM calculations (slow)
- DBEMv2 is faster and more reliable than DBEMv1
- 1. oh.geof.unizg.hr/DBEM
- 2. phyk039240.uni-graz.at:8080/DBEM

Drag-Based Ensemble Model (DBEM): probabilistic model for heliospheric propagation of CMEs

Drag-Based Ensemble Model (DBEM): probabilistic model for heliospheric propagation of CMEs

DBEMv2 (version 2) input parameters

Čalogović et al., in preparation

- Same engine (software) as DBEMv1 with synthetic measurements, however different method is used for input uncertainties
- For all 6 input parameters (T, v, φ, λ, w, γ) random values are generated in a range input ± uncertainty (3 σ) following a normal (Gaussian) distribution
- Advantages:
 - input distributions are better represented than with DBEMv1
 - converges to stable results much faster than method with syn. measurements
 - allows lower number of DBM runs faster
 - user can choose the exact number of DBEM runs
- Disadvantages:
 - due to random input, it produces every time slightly different results - differences converge with increasing nr. of runs (differences are negligible at >10 000 runs)

DBEMv2 results

- More accurate hit/miss ratio due to better representation of normal distribution in uncertainty range
- Provides statistics (mean, min, max, StDev, CI) for all calculated parameters
- User can download all results in a zip file
- Will be soon integrated in ESA SSA portal as operational forecasting tool in the frame of the ESA Expert Service Group for Solar & Heliospheric Weather
 (

swe.ssa.esa.int/ heliospheric-weather) - Arrival time: 2013-09-01 13:40:51 < 2013-09-01 21:43:37 < 2013-09-02 07:00:54 based on 30000 DBM runs, calculated in 20.83 seconds

Input parameters

	input value	uncertainty
CME date&time	2013-08-30 06:21:00	30.0
gamma	0.1	0.05
SW speed (w)	350.0	50.0
CME speed (v0)	861.0	167.0
CME h-w (lambda)	59.0	18.0
CME lon. (phi CME)	-48.0	15.0
R0	21.5	
Target	Earth	

DBEMv2 on-line tool

- http://oh.geof.unizg.hr/DBEMv2
- 2. http://phyk039240.uni-graz.at:8080/

DBEM_{V2}