NOAA SWPC NASA CCMC

SPACE WEATHER MODELING ASSESSMENT

OUTLINE

- 1. HELIOSPHERIC MODELING IN SPACE WEATHER FORECASTING
- 2. CURRENT OPERATIONAL CAPABILITIES
 - 1. Components of SWPC Heliospheric model:
 - 1. WSA
 - 2. Enlil
 - 3. Cone Model
 - 2. Operational Configuration
 - 3. Products
- 3. NEED FOR IMPROVEMENT
- 4. UPGRADE EFFORTS
- 5. TIME-DEPENDENCE & ADAPT QUANTIFYING IMPACT

HELIOSPHERIC MODELING IN SPACE WEATHER FORECASTING

- Critical insight into heliospheric transients Coronal Mass Ejections (CMEs), High Speed Streams (HSSs), Co-rotating Interactions Regions (CIRs)
- 2. Informs forecasts of potential Earth impacts and hazardous modifications of Geospace environment

Operationally, these capabilities are enabled at SWPC through reliance on the Wang-Sheeley-Arge (WSA) coronal and solar wind model, fed by GONG photospheric observations, and coupled to the Enlil Heliospheric MHD model.

NSO GLOBAL OSCILLATION NETWO

Producing Science Quality Photo 2006 from 6 sites worldwide

Operational Daily-updated syno full synoptic maps)

- Comprised of many magnetograms centered on CM
- Longitudinal weighting function $\sim \cos^2 \theta$
- Polar field filler

ince

C

WANG-SHEELEY-ARGE (WSA)

- Semi-empirical coronal and solar wind model
 - Input: Ground-based photospheric magnetic field observations (GONG)

Potential Field Source Surface + Schatten Current

Sheet -> Corona

Empirical relation

Nick Arge, NASA

CONE MODEL

- Latitude:
- Longitude:
- CME Half-Width:
- CME Speed:

CONE MODEL

Characterize CME for insertion into Enlil using CAT

3D LEMNISCATE

CME INJECTION INTO ENLIL

- Injected through Enlil inner boundary (21.5 Rs)
- Ensuing Heliospheric evolution modeled by Enlil

OPERATIONAL CONFIGURATION

- Execution on NOAA's Weather and Climate Operational Supercomputing System (WCOSS)
- First operational space weather model implemented in 2011
- Execution takes ~ 1.25 hr on 36 cores @ medium res (512x60x180)
- Executes every 2 hours
 - Ambient run unless Cone file exists
 - CME forecasters fit CME by characterizing the speed, width, and location of eruption using CME Analysis Tool (CAT)

CME Characterization:

- * Forecaster training improved CME fitting
- * More realistic ejecta: flux rope, spheromak, density

- * Accuracy of model inputs: classic GONG maps -> zero-point corrected
- * Incorporation of photospheric dynamics: time dependent synoptic maps
- * Limb/farside data: Additional observations, flux transport modeling (ADAPT)

CME Characterization:

- * Forecaster training improved CME fitting
- * More realistic ejecta: flux rope, spheromak, density

- * Accuracy of model inputs: classic GONG maps -> zero-point corrected
- * Incorporation of photospheric dynamics: time dependent synoptic maps
- * Limb/farside data: Additional observations, flux transport modeling (ADAPT)

CME Characterization:

- * Forecaster training improved CME fitting
- * More realistic ejecta: flux rope, spheromak, density

- * Accuracy of model inputs: classic GONG maps -> zero-point corrected
- * Incorporation of photospheric dynamics: time dependent synoptic maps
- * Limb/farside data: Additional observations, flux transport modeling (ADAPT)

CME Characterization:

- * Forecaster training improved CME fitting
- * More realistic ejecta: flux rope, spheromak, density

- * Accuracy of model inputs: classic GONG maps -> zero-point corrected
- * Incorporation of photospheric dynamics: time dependent synoptic maps
- * Limb/farside data: Additional observations, flux transport modeling (ADAPT)

WSA-ENLIL ENHANCEMENT

- Inputs: uncorrected GONG maps -> zero_point corrected
- ▶ WSA-2.2 -> WSA-4.4:
 - * Retuned empirical relationship
 - * Increased resolution
 - * Reduced kinking at PFSS/SCS interface
 - * Updated code-base: Perl, IDL -> Python
- Enlil-2.6 -> Enlil-2.9:
 - * Compatible with time-dep. inner boundary
 - * Option for less diffusive numerical scheme
 - * Density prescription w/in ejecta
- Both updated codes are compatible with ADAPT!

TIME-DEPENDENT DRIVING

Static synoptic map

No dynamic evolution of solar surface during model run - steady state heliosphere

Sequence of maps

Includes photospheric dynamics

- * "smooth"heliosphericsolution
- * Impacts CME propagation

M. Leila Mays, NASA CCMC

TIME-DEPENDENT DRIVING ...CADENCE?

ADAPT: FLUX TRANSPORT / DATA ASSIMILATION

The Air Force Data Assimilative Photospheric Flux Transport Model (ADAPT) - Ensemble model of photospheric transport processes + data assimilation:

- Differential Rotation
- Meridional Flow
- Supergranular Diffusion
- Random Flux Emergence

ADAPT REALIZATIONS DRIVING WSA PREDICTIONS:

3 Day Advanced Predictions and Satellite Observations

GONGb

ADAPT

COLLABORATION WITH NASA CCMC

Effort to quantify impact of time-dep. GONG inputs and ADAPT modeling

- Define historic event list comprised of official SWPC model runs
- Verify replication of SWPC configuration at CCMC
- Compare arrival time metrics for the following sets of boundary conditions:

Static	Time-Dep.
GONG driven (Baseline)	GONG driven
ADAPT driven	ADAPT driven

COLLABORATION WITH NASA CCMC

Team

NASA CCMC: M. Leila Mays, Peter Macneice, Neel Savani, Aleksandre Taktakishvili

NOAA SWPC: Eric Adamson, Vic Pizzo, Doug Biesecker

- * Results compiled in community accessible database
- * Year-1 report to appear within the CME Arrival Time Working Team paper
- * Culminates in final report advising path forward toward improved space weather forecasting

ENLIL - 3D MHD HELIOSPHERIC MODEL

CME ANALYSIS TOOL (CAT) "3-VIEW" "2-VIEW"

OPERATIONAL CONFIGURATION: MODEL EXECUTION

1.5 hours Wallclock time on NWS CCS

PRODUCTS

PHOTOSPHERIC INPUTS / CME CHARACTERIZATION

- Static synoptic map:
 - no dynamic evolution of solar surface during model run
 - stale far side observations
- Ejecta contains no magnetic structure:
 - magnetic pressure replaced by enhanced density/temperature
 - uniform density enhancement
- Inaccuracies in modeling:
 - CME characterization
 - ambient offset

- move toward timedependent synoptic maps
- employ flux transport
 model (ADAPT) + far-side
 helioseismic detections
- investigate density distribution and spheromak insertion
- pursuing potential for mid-course correction utilizing synthetic imagery

UNCORRECTED (GONGB)

CORRECTED (GONGZ)

WSA-ENLIL ENHANCEMENT: MOVE TO ZERO-POINT CORRECTED

