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* Space weather-related satellite anomaly types
* Modeling space weather anomaly risk

* The “green anomalies” metric

* Estimating the impact of model errors on green anomaly rate
* Results for some sample anomalies
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Inner 2l Space weather-related satellite anomaly types
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* Event Total Dose (ETD) occurs primarily in orbits that rarely see
trapped protons in the 1-20 MeV range (e.g., GEO, GPS) because
these are the orbits for which solar particle events and transient
belts make up a majority of the proton dose (including displacement
damage).

* Single Event Effects (SEE) tend to occur in the inner (proton) belt
and at higher L shells when a solar particle event is in progress.

* Internal charging (IC) and resulting electrostatic discharges (ESD)
occur over a broad range of L values corresponding to the outer
belt, where penetrating electron fluxes are high.

* Surface charging (SC) and resulting ESD occur when the
spacecraft or surface potential is elevated: at 2000-0800 local time
In the plasma sheet and in regions of intense field-aligned currents.
It has also been observed, but not explained, at very low L.
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Modeling space weather anomaly risk - |

* Multiple anomaly investigations have

established that the anomaly rate can ) internal Charging Anomaties in 81O
be described with a power-law: ol Py Dl o x Suring anomalies ,

— = P_(x|C;2): Fitted distribution, y=1.39

—r(x) ~x” o8l
— x = particle flux, dose rate, current, etc.,
suitably time averaged.

— y = empirically determined parameter
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* Afitting procedure allows us to select =
an appropriate x and estimate y when A
we have reasonably long-term 03
measurements and a statistical 0.2
sample (>~5) of similar anomalies 01
* See, e.g., O'Brien 2009, Space 0 = e

Weather X: >1178 keV e-, 12-hr avg



Modeling space weather anomaly risk - Il

Example Hazard Indicator Typical Time Averaging | Typical
(hours) exponent (y)

Surface Charging >10 keV electron flux NONE 1-4
Electron temperature
Field-aligned current intensity

Internal Charging >1 MeV electron flux 1-72 0.7-2
Current beneath 100 mils Al shielding
Dose rate (outer zone) below 100 mils Al

Event Total Dose >5 MeV proton flux 12-72 1
Dose rate below 5 mils Al

Single Event Effects  >30 MeV proton flux NONE 0.5-2
>30 MeV cm?/mg flux

X = trailing time average of the hazard indicator



Green anomalies

* Operators typically interact with stoplight charts that use a red-yellow-
green color scheme

* “Green anomalies” refers to anomalies that occur when the
environment is “green’

* We define “green” conditions as having x below the 75" percentile

* Given p(x), the statistical distribution of x, and the exponent y, we can
estimate what fraction of anomalies occur when x is in the lower 75t
percentile, i.e., when the environment is “green”
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Computing the green anomaly rate \

* The fraction of anomalies under green conditions is given by:

7% x¥ p(x)dx

R fooo xYp(x)dx
* Where X is the 75" percentile of x for surface and internal charging

* For single event effects and event total dose, X is the 75" percentile
of X during solar particle event times only

G

* Larger yleads to smaller G
* A fatter tail in p(x) leads to smaller G



Estimating the impact of model errors on green anomaly rate

* Now we add multiplicative random noise to X
y = xexplon] = xF", n~N(0,1)
* The random noise 7 is drawn from a Gaussian with zero mean and unit variance

* F is the error factor, and can be thought of as the half-width at half-max of the error
distribution

* Interpretation of F: ~95% of the time, truth will fall within F2 of the
observation/model

* Example: if F=4 (i.e., 4x error), then 95% of the time, the truth falls within a factor

of 16 of the observation/model
* The green anomaly fraction for noiJsrdeata IS given by:

- [ pdy [ 2y FTpIN(mdndy By, x!

[, xody [ [Ty F p()INMmdndy XX/
* Important: compute 75" percentile y-- from noise-added data
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*Flux variation half-width (log-normal sense) = “1-sigma” value of multiplicative
flux variation. E.g., for a value of 10, ~2/3 of the flux values fall within a factor of
10 of the median flux.
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4. The greatest return on
Improvement appears to be
obtained when cutting the error
down from ~30x to ~4x

5. There is often no improvement
reducing error less than 2x
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*Flux variation half-width (log-normal sense) = “1-sigma” value of multiplicative
flux variation. E.g., for a value of 10, ~2/3 of the flux values fall within a factor of

10 of the median flux.




Conclusions

* Even very large multiplicative errors do not erase all of a model’s value for
anomaly attribution, at least for the “green anomalies” metrics

* The greatest value for improvement occurs when decreasing the error from
~30x to ~4x

Caveats
— There are going to be exceptions (e.g., HEO surface charging)
— Confounding parameters (e.g., temperature, materials, attitude) also affect how model
error impacts anomaly analysis
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