9th CCMC Community Workshop College Park, Maryland April 23 – April 27, 2018

INTERNATIONAL SPACE WEATHER ACTION TEAM FOR THE COORDINATED ASSESSMENT AND IMPROVEMENT OF IONOSPHERE VARIABILITY PREDICTIONS

ANNA BELEHAKI
RESEARCH DIRECTOR
IAASARS, NATIONAL OBSERVATORY OF ATHENS, GREECE

OVERVIEW OF COLLABORATION ACTIVITIES IN EUROPE

- Operation of <u>observing networks</u>: Ionosondes, Doppler Sounders, GNSS receivers
- Development of ionospheric <u>prediction models</u>
- Systematic collaboration with the European Space Agency for the provision of ionospheric <u>prediction services</u> that meet the needs of operations
- Implementation of European and international projects for achieving <u>scientific advances</u>
 <u>driven by users requests</u>

space situational awareness

IONOSPHERIC MONITORING NETWORKS

Mainly for large scale ionospheric disturbances at mid & high latitudes

THE EUROPEAN DIGITAL UPPER ATMOSPHERE SERVER REAL-TIME IONOSPHERIC VARIABILITY BASED ON THE COMBINED USE

OF DIGISONDE DATA
AND GNSS TEC

http://dias.space.noa.gr

- Modeled areas: bottomside/topside ionosphere and plasmasphere
- Models implemented: SIRM, SIRMUP, SWIF, GCAM, TaD, IRI

Negative effect nowcasted by DIAS f-plots on 3.10.2013

Positive effect nowcasted by DIAS f-plots on 23.10.2013

NEW DIAS nowcasting maps of foF2

IONOSPHERIC FORECAST OF LARGE SCALE DISTURBANCES UP TO 24 HRS IN ADVANCE CAN BE ACHIEVED WITH EMPIRICAL MODELS DRIVEN BY SOLAR WIND DISTURBANCES OBSERVED AT L1

SWIF The solar wind driven ionospheric forecast model

- The forecast up to 12 hrs ahead is much improved when the autoregression predictions are corrected with the empirical formulations of the Solar Wind Ionospheric Forecast model.
- Tsagouri, Koutroumbas and Belehaki (Radio Science, 2009)

BUT HOW TO DETECT AND FORECAST TID?

LS TIDS IDENTIFIED WITH THE GRADIENT ANALYSIS OF TEC MAPS

HF GEOLOCATION AND SATELLITE – BASED AUGMENTATION SYSTEMS ARE MOSTLY AFFECTED BY TRAVELLING IONOSPHERIC DISTURBANCES

HOW TO DETECT TIDS?

1. EXPLOIT ADDITIONAL NETWORKS IN NORTH AND SOUTH

HEMISPHERES

HOW TO DETECT TIDS? 2. DEVELOP A ME THODOLOGY BASED ON THE CAPABILITIES OF VAP TID mainly from LEMENTARY OBSERVING TECHNIQUES

HOW TO DETECT TIDS? 3. TRANSITION TO OPERATIONS

Net-TIDE is a collaborative project jointly implemented by 9 research institutes and universities in Europe, USA, Japan and Australia

HOW TO DETECT TIDS? 4. INVOLVE THE USERS Users Requirements Validation Real-time TID Models/algorithms detection Validation Actionable products **TID** drivers Impact assessment Mitigation techniques System degradation http://tech-tide.eu WEB: performance TechTIDE Project Follow HORIZ N 2020 Twitter: @ Tech_TIDE

Adapt the TID detection methodology to monitor and forecast additional ionospheric perturbations that affect HF communications and satellite operations

CHALLENGES TO BE CONSIDERED IN THE ISWAT FOR IMPROVING IONOSPHERIC VARIABILITY PREDICTIONS

- Improve the ionospheric forecasting window
 - Physical vs empirical models
 - Global vs regional models
 - Specify and forecast ionospheric drivers: solar, magnetospheric, lower atmosphere drivers
- Networking with users
 - work to improve users awareness; collect/upgrade users needs
 - organize validation workshops for users; support mitigation technologies
- Data availability/coverage
 - Ground based: oceans, polar regions, equator
 - Space missions: topside sounding system
- Data quality and standardization
 - Add quality flag to the ionospheric characteristics; assess VTEC/STEC methodologies
 - Develop algorithms to fill in data gaps
 - Standardize metadata and data archiving