

CIMI The Comprehensive Inner Magnetosphere-Ionosphere Model

Mei-Ching Fok
Co-developers: Alex Glocer, Natasha Buzulukova, Suk-Bin Kang, Colin Komar
Geospace Physics Laboratory, NASA Goddard Space Flight Center

9th CCMC Community Workshop April 23-27, 2018 Collage Park, MD

Outline

- CIMI: Comprehensive Inner Magnetosphere-Ionosphere Model
 - + Convection-Diffusion Model of Radiation Belts and Ring Current
 - + Convection Model of the Plasmasphere
 - + Ionospheric Potential Solver
- CIMI Capabilities: a great tool to study storm dynamics
- CIMI at CCMC and iSWA
- Future Developments

Modeling Approaches of Radiation Belts/Ring Current

$$\partial f/\partial t + \mathbf{\theta} \cdot \partial f/\partial \mathbf{\theta} + \mathbf{J} \cdot \partial f/\partial \mathbf{J} = (\delta f/\delta t) \mathbf{J}$$
coll

Models	Equations	Pros and Cons	Examples	
Convection- Diffusion Model	$ \frac{\partial f \downarrow b}{\partial t} + (\theta \downarrow 3) \frac{\partial f \downarrow b}{\partial \theta \downarrow 3} \\ + (J \downarrow 3) \frac{\partial f \downarrow b}{\partial J \downarrow i} \frac{\partial J \downarrow i}{\partial \theta \downarrow i} + (\delta f \downarrow b / \delta t) \frac{\partial J \downarrow i}{\partial \theta \downarrow i} \partial J \downarrow$	P: Drift-phase dependent, valid for wide range of energy (RC to RB) C: Solving advection for RB particles is challenging	RAM-SCB, CIMI, VERB-4D	
Diffusion Model	$ \frac{\partial f \downarrow d}{\partial t} = \sum_{ij=1}^{2} \frac{\partial \partial f \downarrow i}{\partial t} $ $ \frac{\partial f \downarrow d}{\partial t} + \frac{\partial \partial f \downarrow i}{\partial t} + \frac{\partial \partial f \downarrow i}{\partial t} $ $ + \frac{\partial f \downarrow d}{\partial t} + \frac{\partial f \downarrow d}{\partial t} $ $ + \frac{\partial f \downarrow d}{\partial t} + \frac{\partial f \downarrow d}{\partial t} $	P: Efficient, good for long-term simulation C: No drift-phase dependence	Salammbo, Dilbert, VERB-3D, BAS-RBM, DREAM	
Convection Model	$\partial f \downarrow b / \partial t + \langle \theta \downarrow 3 \rangle \partial f \downarrow b / \partial \theta \downarrow 3$ $+ \langle J \downarrow 3 \rangle \partial f \downarrow b / \partial J \downarrow 3 = (\delta f \downarrow b / \delta t) \downarrow coll$ ed phase space density	P: Drift-phase dependent C: Diffusion in velocity space is not included	RCM, HEIDI	

 f_b : Bounce-averaged phase space density

 f_d : Drift-averaged phase space density

RB: Radiation Belts RC: Ring Current

CIMI: Model Structure

[Fok et al., 2014]

CIMI Storm Simulation (100 keV e-)

CIMI Storm Simulation (1 MeV e-)

CIMI Prediction of Electron Precipitation

Electron Precipitation (< 40 keV)

CIMI Predicts RB/RC Flux Along Satellite Paths

RBE > 2.5 MeV electron flux at 670 km

CIMI Predicts RB/RC Flux Along Satellite Paths

[Kang et al., 2016]

RBE: Radiation Belt Environment Model

CIMI = RBE + CRCM

CIMI at CCMC

	Developer(s)	Institution	Model Class	Services Available				
Model Name				Runs on Request	Instant Run	Real Time Run	iSWA Cygnet	Source Code link
Inner Magnetosphere:		,		3	1	1		
RCM	Stanislav Sazykin, Richard A. Wolf	Department of Physics and Astronomy, Rice University		x				
Fok Ring Current	Mei-Ching H. Fok	NASA, GSFC	Physics-based	X			X	
Fok Radiation Belt Electron	Mei-Ching H. Fok	NASA, GSFC	Physics-based	X			X	
CIMI	Mei-Ching H. Fok, Natalia Buzulukova	NASA, GSFC	Bounce-averaged drift-kinetic modeling of electrons, protons and oxygen ion particle distributions.	X			X	
UPOS Radiation Belt	Tony Lui, Syau-Yun Hsieh	JHU/APL	Physics-based					
Tsyganenko Magnetic Field	Nikolai Tsyganenko	Univ. of St Petersburg, Russia	Statistical	x	X			X
AE-8/AP-8 RADBELT	Contact Person: D. Bilitza, NASA/GSFC	NSSDC, GSFC, NASA	Statistical		X			X
VERB	Y. Y. Shprits	MIT		X				

CIMI at iSWA Cygnet

CIMI-RT (version as of 2013/12/16): latest real time plots

RBSP spectral plots (RBSP L-time, CIMI 2D electrons, CIMI 2D protons)

L-time at RBSP: Electrons at 600 keV

Summary and Future Works

* Summary: CIMI is great!

* Future Works:

- transform CIMI transport equation to new coordinates with uniform grid i.e., InE instead of E
- transform to new coordinates in which cross diffusion vanishes (J. Albert)
- need to understand the sources of warm (0.1 1 keV) plasma
- get not only qualitative agreements with data but also quantitatively
- make BATSRUS-CIMI available at CCMC