OpenGGCM New Developments

- J. Raeder, K. Germaschewski, L. Wang, D. Cramer & J. Jensen (Space Science Center, UNH)
 - A. Bhattacharjee, A. Hakim (PPPL, Princeton U.)
 - F. Toffoletto & S. Sazykin (Rice U.)
- T. Fuller-Rowell N. Maruyama & T. Matsuo (CU/NOAA, Boulder)
 J. Anderson, T. Hoar & N. Collins (NCAR)

CCMC Workshop, College Park, MD, April 2018

OpenGGCM: Global Magnetosphere Modeling

The Open Geospace General Circulation Model:

- Coupled global magnetosphere ionosphere thermosphere model.
- 3d Magnetohydrodynamic magnetosphere model.
- Coupled with NOAA/SEC 3d dynamic/chemistry ionosphere thermosphere model (CTIM).
- Coupled with inner magnetosphere / ring current models: Rice U. RCM, NASA/GSFC CRCM.
- Model runs on demand (>500 so far) provided at the Community Coordinated Modeling Center (CCMC at NASA/GSFC).
- Fully parallelized code, real-time capable. Runs on IBM/datastar, IA32/I64 based clusters, PS3 clusters, and other hardware.
- Used for basic research, numerical experiments, hypothesis testing, data analysis support, NASA/ THEMIS mission support, mission planning, space weather studies, and Numerical Space Weather Forecasting in the future.
- Funding from NASA/LWS, NASA/TR&T, NSF/ GEM, NSF/ITR, NSF/PetaApps, AFOSR programs.

OpenGGCM-RCM-CTIM Model Data Flow

- Solving the outer magnetosphere driver → convection E-field, precipitation, R1 FAC.
- Proper solution of the inner magnetosphere → ring current, partial ring current, precipitation, R2 currents.
- Proper IT modeling → edensities, conductances, neutrals, recombination, etc.
- All coupled with the appropriate feedbacks.

Coupling With RCM

- 10+ years in the making.
- Metric of success: paper published: Cramer, W. D., J. Raeder, F. R. Toffoletto, M. Gilson, and B. Hu, Plasma sheet injections into the inner magnetosphere: Two-way coupled OpenGGCM-RCM model results, *J. Geophys. Res.*, 122, 5077-5091, 2017. (DOI: 10.1002/2017JA024104).
- Key points: BBF ← → Bubbles, transport due to bubbles.

A New Word: GKEYLL

- Developed at Princeton PPPL (A. Hakim, L. Wang et al.)
- Goal: beyond MHD → multi-fluid (w/e-), higher order moments, Vlasov, ...
- Comparable to full particle kinetic codes.
- A computational framework for Continuum Fluid and Kinetic Simulations
 - Models: Multi-Fluid, Gyrokinetics, Vlasov-Maxwell
 - Schemes: Finite-Volume (robust and fast); Discontinuous-Galerkin (higher than 2nd order accuracy)
- Easy deployment and flexible user interface
- Coupled into OpenGGCM to provide the Multi-Fluid solver
- On track to deliver to CCMC, including a built-in ionosphere
- Post-processing: built-in Python library + native support by community tools like ParaView and VisIT
- Online user portal: http://gkyl.readthedocs.io

Examples of published applications of Gkeyll

Multi-Fluid:

- Local collisionless reconnection
- Global 3d magnetospheric dynamics of Ganymede and Mercury
- Reconnection of partially ionized solar plasmas
- Gyrokinetic
 - Parallel plasma transport in the scrape-off layer of JET tokamak
- Vlasov
 - Solar wind turbulence
 - Ion acceleration in electrostatic shocks
 - Nonlinear saturation of the Weibel instability

Figure: Global structure of the magnetosphere of Ganymede (right) and electron and ion bulk flow patterns (left).

- Comparison of multi-fluid moment models with particle-in-cell simulations of collisionless magnetic reconnection, L Wang, AH Hakim, A Bhattacharjee, K Germaschewsk, Physics of Plasmas 22 (1), 012108, 2015.
- Electron Physics in 3D Two-Fluid Ten-Moment Modeling of Ganymede's Magnetosphere, Liang Wang, Kai Germaschewski, Ammar Hakim, Chuanfei Dong, Joachim Raeder, Amitava Bhattacharjee, JGR, accepted, 2018.

3D multi-fluid simulations of Ganymede

- Ganymede's dipole interacting with southward Jovian magnetic field
- Uses realistic ion mass but artificial electron mass and speed of light
- Correctly captures Alfven wings due to sub-sonic sub-Alfvenic inflow boundary condition
- Demonstrates roles of electrons in both local reconnection physics and global convection

Figure: Snapshot near the Ganymede later in the simulation showing slices of ion pressure, surface parallel electric field, magnetic field lines and ion flow patterns.

Initial and boundary conditions

Figure: Initial flow velocity along +x over magnetic field lines in the meridional plane.

- physical domain $[-64, 64]^3$ in unit of R, numerical grid $528 \times 512 \times 512$
- Ganymede is at origin, Jovian plasmas flow in from -x
- inflow Jovian: $B \sim (0, -6, -77) \, \mathrm{nT}$, $\rho \sim 56 \, \mathrm{amu/cm^3}$, $p \sim 3.8 \, \mathrm{nPa}$, $v_x \sim 140 \, \mathrm{km/s} \Rightarrow M_s \sim 0.56$, $M_A \sim 0.62$
- Ganymede: $R \sim 2634.1 \mathrm{km}$, surface dipole field $B_0 \sim (-18, 51.8, -716.8) \, \mathrm{nT}$

- $d_{i, ext{Jovian}} \sim 0.2 R$, $m_i/m_e = 25$, $p_i/p_e = 5$, $c = 6000 ext{km/s}$, $\Delta x_{ ext{min}} \sim d_i/10 \sim d_e/2$
- 10-moment closure, $k_e = 1/d_e$, $k_i = 1/d_i$ updated locally every time step
- fixed values at -x; floated values at +x, $\pm y$, and $\pm z$
- at radius = R, ghost cell values are constant ρ and p, $\rho \mathbf{v}$ radially reversed, $\mathbf{E} = \mathbf{0}$
 - no induction layer

Reconnection physics 1: ion / electron scales

- currents carried mainly by electrons
- $J_{v,e}$ half-thickness $2d_e$; $J_{v,e}$ half-thickness $1d_i$;

Reconnection physics 2: pressure tensor

- $P_{xx,e}$ concentration near foot-points
- \bullet $P_{off,e}$ is small in magnitude but highly structured
- P_{off,e} polarities agree with local 2D PIC/Vlasov studies

Reconnection physics 4: Ohm's Law decomposition

- $\nabla \cdot \mathbf{P}_e$ important on both reconnection sites
 - leading side, $\partial P_{xy}/\partial x$, $\partial P_{yy}/\partial y$
 - trailing side, $\partial P_{yz}/\partial z$, $\partial P_{yy}/\partial y$
- inertia terms also significant

Surface brighness

↑ simulation, pressures ↓oxygen emission from HST (McGrath2013)

- "brightness"
 represented by
 surface pressure,
 not from rigorous
 semi-empirical
 models
- captures some key features of observations
- p_e and p_i show different polarities

Multi-fluid simulations of Earth

 First simulations with Earth parameters and coupled ionosphere look reasonable.

Issues

- Resolution requirements: need to resolve d_i, d_e to give trustworthy results and avoid instability (as opposed to Hall-MHD, which gracefully degrades to MHD). 300 x 100 x 100 R_E box with .01 R_E resolution: 30000 x 10000 x 10000 grid points...
- Boundary conditions are really only defined in terms of MHD quantities (solar wind, ionosphere potential -> $E \times B$ velocity, while gkeyll wants rho, v, p per species, E, B)

⇒ multi-physics simulation

Blending multi-fluid and MHD

Finding multi-fluid (electron + ion) quantities from single-fluid MHD:

- E directly from MHD
- E from Ohm's Law
- v_s from MHD momentum and current density
- ρ_s from ρ_{MHD} and assumptions (e.g., quasi-neutrality, $\rho_c = \nabla \cdot \mathbf{E}$)
- p_s from p_{MHD} and assumptions (e.g., fixed temperature ratio; preserve temperature ratio)

This all builds on transitioning to MHD in regions where gradients are smooth enough that multi-fluid mostly behaves like MHD already.

Blending OpenGGCM

Blended: gkeyll for $r < 13R_E$, MHD otherwise

Our deliverable

Next generation OpenGGCM

- Options for fluid plasma models (MHD, Hall-MHD, multi-fluid, pressure tensor closures)
- Adaptive mesh refinement
- Implicit time integration
- Coupled to CTIM (done), IPE (in progress), RCM (done).

New components available as open source (LGPL), whole model to be delivered to CCMC.

Modular OpenGGCM

LIBMRC

LIBMRC started out as a collection of commonly used code for solving domain-decomposed PDEs. It forms the basis of three complex codes: MRCV3, PSC and OPENGGCM.

Plasma fluid models in OpenGGCM

It is now possible to replace the existing MHD solver in OpenGGCM with various options:

- Jimmy-MHD + Hall
- CWENO + CT (Ziegler, 2004)
- VL + CT (Stone & Gardiner, 2009)
- direct coupling to ATHENA
- MUSCL-type cell-centered schemes with hyperbolic/parabolic divB cleaning
- coupling to GKEYLL multi-fluid moment code

LIBMRC: staggered AMR

- LIBMRC supports 2D/3D AMR on staggered grids, as required for FDTD / constrained transport.
- Standard schemes translate straight-forwardly: work as usual one patch at a time, LIBMRC takes care of flux correction and constrained transport.
- At coarse-fine boundaries, face-averaged fluxes from fine grid are used to correct coarse grid.
- Coarse-grid E-fields are corrected by line-averaged fine-grid E-fields.
- $\nabla \cdot B$ preserving restriction / prolongation based on Toth et al., 2004
- parallelization using space-filling Hilbert-Peano curve
- filling ghost-cells, flux correction, E-field correction are expressed as (parallelized) sparse-matrix computations.

North-South E field, Precipitation, and TEC

- The red line shows the polar cap boundary.
- Thin contours are FAC.
- PC expands quickly as IMF turns southward.
- Strong northward electric field develops well equatorward of PCB, and just equatorward of of precipitation (current continuity and Ohm's law).
- TEC trough is co-located with electric field, but takes some time to develop.
- → LWS funding now

Storm Enhanced Density (SED) Tongue of Ionization (TOI)

- The sunward convection associated with SAPS drives plasma into the dayside (1).
- High solar UV/EUV flux increases ionization and e- density (2), forming a region of storm enhanced density.
- When the flow turns tailward again (3), it is driven to higher altitude due to field line inclination (4). This forms the Tongue Of Ionization (4,5).
- We have yet to find this in the simulations. There are some issues with CTIM vertical transport, which should get resolved with IPE.

Foster et al., GRL, 2014 →

OpenGGCM - DART Data Assimilation

- DART: Data Assimilation Research Testbed. Ensemble Kalman Filter (EnKF) environment developed at NCAR.
- Determined the relevant prognostic and diagnostic variables.
- Grids and coordinates (a bit different than atmosphere and ocean.)
- Programmed data exchange (netcdf requirement).
- · Prepared COSMIC data.
- Determined necessary control code requirements, no restarts by model pauses.
- · AFOSR funded.

Upcoming CCMC additions

- GKEYLL. Details (dimensions, closures, B.C. etc.) TBD.
- OpenGGCM v5.0: w/RCM & numerous other improvements.

Space Weather with a Cell Phone

- December 30/31, 2015 storm.
- \$10 cellphone in my backyard.
- Noise ~50 nT for 1 minute averages.
- My expensive cell phone is ~5 times better: 100 samples/s, ~10 nT noise when averaged to 1 minute.
- There are >5B cell phones in the world.
- Data are useless most of the time because phones move.
- But when they don't move they can catch something interesting.
- The magnetometers in cell phones cost <\$1!!

