Transitioning AWSoM-R, EEGGL and M-FLAMPA to the CCMC

Igor V. Sokolov, University of Michigan, on behalf of the SWMF Team and CCMC team

9th CCMC User Workshop College Park, MD, April 24 2018

The First-Principles Model of CME Magnetic Structure and Evolution is Available to the World

StereoCAT CME Analysis Tool

EEGGL Eruption Event Generator by Gibson & Low (delivered as a package)

SWMF AWSoM-R

Global MHD simulations of CME plasma and magnetic structure eruption and propagation through space

24 user simulations executed since Nov 2016

NSO/GONG Magnetogram - processed for SWMF input

SWMF Team: Igor Sokolov, Meng Jin (UMich) CCMC: R. Mullinix, A. Taktakishvili

DONKI

Event type
Coronal Mass Ejection

If you are looking for the official U.S. Government forecast for space weather, please go to NOAA's Space Weather Prediction Center (http://swpc.noaa.gov). This "Experimental Research Information" consists of preliminary NASA research products and should be

NASA Official: Dr. Maria Kuznetsova Curator: Chiu Wiegand Desired time interval

2012-07-23

Tentative parameters: longitude, latitude and speed

144.0 -15.0 3435.0

Date 2012-07-23 02:36

StereoCAT

StereoCAT

MHD Simulation. CME Simulation

Initiating CME simulation with Eruptive Event Generator using Gibson-Low flux rope (EEGGL)

MHD Simulation. CME Simulation

- To initiate CME in simulation impose Gibson-Low (GL) flux rope Apply stretching transformation (Gibson and Low 1998, Shiota and Kataoka 2016)
- Described in the commentary by Borovikov et al JGR (2017)

MHD Simulation. CME Simulation

Initiating CME simulation with EEGGL

 Based on magnetogram (boundary condition), parameters of GL flux rope are computed

EEGGL

CME Visualization

Developed and painted by M.Kuznetsova

Towards coupled heliosphere and SEP models

CCMC is making steps towards offering a system to run SEP models driven by a variety of heliospheric models.

Modelers: N. Arge, D. Odstrcil, J. Luhmann, J. Linker, N.Schwadron, M. Gorby, I.Sokolov

Field-Line-Advection Model for Particle Acceleration (FLAMPA)

Parker equation or the focused transport equation may be expressed in the Lagrangian coordinates (Sokolov et al 2004, Kota et al 2005)

$$\frac{\partial f}{\partial t} + \mathbf{u} \cdot \nabla f - \frac{1}{3} (\nabla \cdot \mathbf{u}) \frac{\partial f}{\partial \log p} = \nabla \cdot (\kappa \cdot \nabla f), \quad \kappa \propto \mathbf{BB}$$

$$\frac{Df}{Dt} + \frac{1}{3} \frac{D \ln \rho}{Dt} \frac{\partial f}{\partial \ln p} = B \frac{\partial}{\partial s} (\frac{\varkappa}{B} \frac{\partial f}{\partial s})$$

Reduction to single spatial dimension transforms spatially 3-D problem to multitude of spatially 1-D problems

Technology with Many Field Lines. Design

A forecasting framework:

- Model of Solar Corona and Inner Heliosphere
 - Block-Adaptive-Tree-Solar-wind-Roe-type-Upwind-Scheme (BATS-R-US)
- Kinetic particle model

Multi-Field-Line Advection Model of Particle Acceleration (M-FLAMPA)

