Research and educational opportunities of local models at the CCMC

ilja.honkonen@nasa.gov NASA GSFC / CUA

Research and education needs

Most models at CCMC developed for specific purpose

- Usually not many points of customization, for example one cannot (via web browser):
 - change strength of earth's dipole
 - spin up the sun or rotate in other direction
 - have three stars and one planet, etc.
 - fast 2d heliosphere with custom planets
 - vary atmospheric density, composition, rotation
- No 1d or 2d runs, simple tests, examples
- Not much room for exploration
- Local models can fill some above gaps

Local plasma model

- Solves magnetohydrodynamic (MHD), hybrid or full kinetic plasma equations
 - describes plasma on large (fluid), medium (ions) and small (electrons) temporal & spatial scales
- Little or no application specific functionality
 - no ionosphere, flux rope, magnetogram, etc.
 - periodic grid or simple boundary conditions
- Added to CCMC in 2015

Local models at CCMC

- 3 models have results, but not yet runnable
 - full kinetic description of plasma (particle-in-cell method)
 - PIC-Hesse, P3D, VPIC
 - 2d magnetic reconnection
 - 5 runs total
 - arbitrary plotting of bulk plasma and field data
 - distribution function plots from predermined locations
- 1 model runnable

Local models at CCMC

- 3 models have results, but not yet runnable
- 1 model runnable via Runs-on-Request
 - ccmc.gsfc.nasa.gov/models/modelinfo.php?model=PAMHD
 - MHD part of particle-assisted MHD (PAMHD)
 - hybrid particle-in-cell part in testing
 - 1d, 2d, 3d, periodic grid or simple boundary conditions
 - results so far include reconnection, shock tube, blast wave, bow shock, advection, Kelvin-Helmholtz, solar wind signal attenuation (relevant to ULF challenge)

Particle-Assisted MHD

- Available at github.com/nasailja/pamhd
 - license of MHD part GPLv3, others mostly BSD(3)
- Dynamic run submission page using javascript
 - add/remove initial/boundary conditions client-side
 - based on index.html in github repository
- Run composed from choice of:
 - any number of initial and boundary volumes
 - box and sphere geometries
 - value and copy boundaries
 - time & space dependent mathematical expressions

Particle-Assisted MHD

Demo of requesting a PAMHD run from CCMC: How to request a PAMHD run on CCMC, hires.mp

CCMC Services available for PAMHD

Request a Run See how to request a run.

View Request Results See how to visualize PA

Download Source Code See how to contribute

Model Developer(s)

Ilja Honkonen NASA GSFC

Model Description

Educational opportunities of local models (in addition to usual CCMC advantages)

- For Runs-on-Request (RoR) beginners
 - study simple(st) plasma systems in 1d, 2d, 3d
 - advection, reconnection, instabilities, waves (CME rarefaction), discontinuities, shocks
 - study effects of initial / boundary values
 - plot, understand and reproduce results from plasma physics lectures, books, papers, etc.

Educational opportunities of local models

Demo of solar wind run: solar_wind.gif

- 1d box with uniform density, pressure, B
- Value boundary on right, copy boundary on left
 - number density: 5e6 *
 (1 + 0.2 * sin(0.01 * pi * t))

Educational opportunities of local models

Demo of shock tube run: shock_tube.gif

- 1d box divided into initial condition of two states
- Value boundaries at ends of tube

Educational opportunities of local models (since PAMHD is free & open source)

- For beginning model developers
 - see how things are / can be done in practice
 - from Jacobian in MHD paper to implementation
 - use of existing software (athena, boost, dccrg, eigen, muparserx, zoltan, ...)
- Point and click development in browser via github (How to contribute to PAMHD.mp4)
 - use, study, modify existing code
 - create new test configurations
 - submit changes for comments/review/inclusion

Research opportunities of local models

For RoR pros

- extend existing runs with new boundaries, dimensions
- investigate hypotheses from observations and global models
 - create simplified cases, how simple is good enough?
 - where/why do global models fail, what should work?
- explore new configurations
- suggest / modify existing and/or develop new boundary conditions
- many astrophysical possibilities

Research opportunities of local models

Demo of 2d heliosphere run: heliosphere.gif

- 2d box with initially uniform density, B no V
- Box copy boundaries at edges of simulation volume, spherical value boundary at center:
 - density: fmod(abs(fmod(atan2(r[1],r[0]) + 2*pi, 2*pi) 4*pi*t), 2*pi) < pi/8 ? 2 : 1
 - velocity: radial outflow * above expression

Research opportunities of local models

- For RoR pros
- For pro developers
 - advanced C++ programming (gmd-8-473-2015)
 - new simulation variable: +2 lines of code (LOC)
 - update above variable between processes: +2 LOC
 - couple different variables: +0-10 LOC
 - high performance computing (j.cpc.2012.12.017)
 - parts tested up to 64k processes and 98k cores
 - CCMC testing NASA Pleiades (>200k cores) for RoR
 - <u>algorithms</u> TODO: adaptive mesh refinement, constrained transport, self-gravity, better accuracy, spherical geometry, special/general relativity, etc.