

Current Status of Ionospheric Data Assimilation at JHUAPL

April 12, 2016

Dr. Gary S. Bust Geospace and Earth Science Group JHUAPL

Electro-Magnetic Propagation Interaction with lonosphere

MAIN OBJECTIVE:

Nowcasts/short forecasts (1-3 hours) of large scale and medium-scale ionosphere in support of RF applications

GLobal Ionosphere, Modeling, Prediction and Specification Environment (GLIMPSE)

GLIMPSE operation

- GLIMPSE Executive runs single assimilation and prediction steps in IDA4D and fusion.
- GLIMPSE tracks times and inputs, then feeds these to IDA4D and fusion
- Overall parameters of the run (time interval, resolution, data sources, etc., are specified in the GLIMPSE user configuration file

Fast moving patches and tongues of ionization can severely impact RF applications in the VLF, HF, VHF, UHF frequency bands

EMPIRE: CINDI IVM for March 17, 2013

EMPIRE:

Data assimilative estimation of neutral winds, composition and electric fields help to *forecast electron density 1-3 hour*s into the future for RF applications

Zonal and meridional drifts near C/NOFS location at ~ 10:25 UT

End to End Medium Scale Ionospheric Wave Corrections

IDA4DW-high res:

Very accurate estimation of the 3D time evolving ionospheric wave field is required for HF and low-VHF RF applications

Bottom-side waves seem to be always present.

Independent of solar activity, time of day, geographic location

Goal: Accurate knowledge impacts correction to HF/RF systems as well as planning / decisions

Status

IDA4D

- > Written in F90 for most part
- > Installation
- Linux redhat distributions
- All necessary libraries are in the distribution
- > Set 1 environmental variable
- Type make wait 1 hour or so depending on speed of computer
- Python script to configure and set up directory for run
- Multiple scripts to download and process data

EMPIRE

- > Written in MATLAB
- > Runs in a "research" mode
- Currently being coupled to GLIMPSE

FUSION

- > Solves for electron density
- > Production, loss, diffusion
- Winds, precipitation and electric fields to be added

IDA4DW-high-res

- Full 4D estimator of waves developed in research mode
- Use of HF data, GPS

GLIMPSE

- FUSION and IDA4D have been coupled and sample results
- > Beginning testing and validation

Near Future Plans

IDA4D

- > Get bottom-side HF estimation working again
 - New improved ray-tracer
 - Angles of arrival, doppler in addition to group delay
- > Ingest SSUSI auroral products

FUSION

> Add winds, precipitation and electric field modeling

GLIMPSE

- Couple EMPIRE to IDA4D and FUSION
- Ingest APL high latitude drivers
 - AMPERE FAC
 - SuperDARN electric fields
 - SuperMAG
 - SSUSI precipitation