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IMPTAM 1is a physical model of the inner magnetosphere

developed at the Finnish Meteorological Institute by Natalia
Ganushkina et al. (e.g., 2001, 2005, 2006, 2013, 2014, 2015).

The model traces electrons and 10ns in the keV range from the nightside

plasma sheet into the inner magnetosphere and near the plasmasphere.

It 1s a well-established model 1n the community with dozens of papers and

presentations.

IMPTAM for electrons has been run nearly continuously using real-time
data since September 2013; results viewable at http.//imptam.fmi.fi.
http://fp7-spacecast.eu, and http://csem.engin.umich.edu/tools/imptam/
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IMPTAM traces ions and electrons with arbitrary pitch angles from the
plasma sheet to the inner L-shell regions with energies 1 to 300 keV 1n
time-dependent magnetic and electric fields

* traces a distribution of particles in the drift approximation under the
conservation of the 1% and 2" adiabatic invariants. Liouville’s theorem
is used to gain information of the entire distribution function

* for the obtained electron distribution function, we apply radial
diffusion by solving the radial diffusion equation

* losses: charge exchange (ions), pitch angle diffusion (electrons), and
convection outflow

* advantage of IMPTAM: can use any magnetic or electric field model,
including self-consistent magnetic field and substorm-associated
electromagnetic fields
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Inner Magnetosphere Particle Transport and Acceleration Model
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used in IMPTAM nowcasting Model

Magnetic field model: 7syganenko T96 (Dst, Psw, IMF By and Bz)
Electric field model: Boyle et al. (1997) (Vsw, IMF B, By, Bz)

Boundary conditions at 10 Re: kappa distribution with number density
and temperature given by Tsyganenko and Mukai (2003) model (Vsw, IMF
Bz, Nsw)

Radial diffusion for electrons with diffusion coefficient D,

D . 100.056Kp—9.325 LlO
LL —
Losses: depend on Kp index, magnetic field
Strong diffusion (L=10-6):
Weak diffusion (L=2-6):

r,, =4.8-10"B °L'E?, B’ =2-10>°"*%P ERQZE 08I 0l 1)

(Brautigam and Albert, 2000)

(Chen et al., 2005)
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Empirical model for plasma sheet electron density (and
temperature) at 6-11 R_based on THEMIS data that 1s
now applied for the plasma sheet source in IMPTAM.
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Comparison on nearly two years of IMPTAM nowcasting results for
Goes-13’s geosynchronous orbit: input parameter effects

IMPTAM output GOES-13 MAGED IMPTAM / MAGED ratio
E = 40 keV/ _ E = 40 keV




Inner
Magnetosphere
Particle Transport

2. Current research with IMPTAM ot Aceslor o

Model

Video of a modeled January 2, 2005 charging event:

equatorial electron fluxes
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Role of substorm-associated electromagnetic pulses in the ring current

formation during May 2-4, 1998 storm: energy density for ions
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IMPTAM is continuously run with real-time solar wind data and

geomagnetic indices for nowcasting.
Currently the model 1s run hourly.

IMPTAM nowecasting has been running since September 2013,

and 1t hasn’t had gaps 1n results for last 12 months.

The model responds to all changes in the solar wind and handles also

extremes and storm times well.
The results are shown on our website Attp.//imptam.fmi.fi as well as on

Michigan University’s CSEM website and www.fp7-SpaceCast.eu
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zp IMPTAM

IMPTAM webpage real-time view

Rl ime IYPTAN Electron fluxes for the midnight from
| soomveamems. =~ L= 2 to 8 are provided as well as for
W the Goes-13 location. IMPTAM

B " electron fluxes are compared with
Goes-13 MAGED instruments fluxes

for energies of 40, 75 and 150 keV.

Electron fluxes at geostationary orbit
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IMPTAM vs Goes13

Key input parameters from the solar

wind and geomagnetic indices are
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More realtime plots in realtime plots directory.
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Last 24 hours

SpaceCast webpage real-time

view of 40 keV electrons

40 kaV Electron Flux at Midnight MLT
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Electron fluxes for the midnight
are provided. IMPTAM fluxes

| . are compared with Goes-13

o ooty 1 tmoscmomian MAGED instruments fluxes

for electron energies of 40, 75
and 150 keV.
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Key solar wind and geomagnetic

indices are also presented.
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IMPTAM setup for CCMC Instant Run
Provides ion (H", He", He™", O") and electron fluxes for 1-300 keV

anywhere within L<10 R, and for all pitch angles every 5 minutes

Optional: User Optional: User User refrieves
defines satellite defines special numerical
cuts output files

ser can create
special plots
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IMPTAM code models saves fluxes for
I M PTAM the period for ions and equalona’ and

electrons

meridional cuts
every 5 min
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IMPTAM 1s well suited for CCMC runs:
* The model 1s robust with all solar wind and geomagnetic conditions.
* [t 1s an established scientific tool in space weather research.

* [t1s being actively developed.

Future developments:

Automated substorm pulse generation from realtime AL index:
After 1t has been tested with IMPTAM nowcasting,
IMPTAM code for CCMC Instant Run will feature the same.

User options for models used for magnetic field, electric field, etc.
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