

Bart van der Holst, I. Sokolov, T. Gombosi

Alfvén Wave Solar Model (AWSoM)

- I. Sokolov et al. ApJ **764**, 23 (2013)
- B. van der Holst et al. ApJ **782**, 81 (2014).

Extended MHD physics:

- Two (T_i, T_e) or three $(T_{i||}, T_{i\perp}, T_e)$ temperatures
- Equations for parallel and antiparallel propagating turbulence (w_±)
- Physics-based reflection of w₊ results in turbulent cascade
- Physics-based apportioning of turbulence dissipation (at the gyro-radius scales) into coronal heating of various species
- Wave pressure gradient acceleration of solar wind plasma
- Collisional and collisionless electron heat conduction
- Radiative plasma cooling using CHIANTI

Heat conduction

Heat conduction

w_

W_

Radiative cooling

Boundary Conditions:

- Radial magnetic field is derived from synoptic solar magnetograms
- Poynting flux of outward propagating turbulence:

$$(S_A/B)_{\odot} = 1.1 \times 10^6 \text{ W m}^{-2} \text{ T}^{-1}$$

Alfvén Wave Turbulence

M Wave energy densities of counter-propagating transverse Alfvén waves parallel (+) and anti-parallel (-) to magnetic field:

- M The wave reflection is due to field-aligned component of the Alfvén speed gradient and vorticity.
- **M** Phenomenological wave dissipation (Dmitruk et al., 2002): $\Gamma_{\pm} = \frac{2}{L_{\perp}} \sqrt{\frac{w_{\mp}}{\rho}}$
- **M** Similar to Hollweg (1986), we use a simple scaling law for the transverse correlation length $L_{\perp}\sqrt{B}=150~{\rm km}~\sqrt{\rm T}$
- **M** Poynting flux of outward propagating turbulence:

$$(S_A/B)_{\odot} = 1.1 \times 10^6 \text{ W m}^{-2} \text{ T}^{-1}$$

Heat Partitioning

- M Counter-propagating Alfvén waves due to partial reflection of the waves
- M Non-linear interaction of these waves results in transverse energy cascade
- **M** Wave dissipation at the gyro-kinetic scales
- **M** The coronal heating formulation used in AWSoM:
 - Linear damping of kinetic Alfvén waves (KAW), resulting in electron and parallel proton heating
 - Electric field fluctuations due to transverse turbulent cascade can disturb the proton gyro motion enough to give rise to perpendicular stochastic heating
 - Electron heating at scales much smaller than proton gyro-radius

Validation: EUV Images for CR2107

Simulations of Polar Jets

M Jet produced by adding small bipole below solar surface and rotating boundary plasma around bipole magnetic axis

Computational Grid: AWSoM

- M AWSoM is split in two coupled framework components: stretched spherical grid for solar corona, cartesian grid for inner heliosphere
- M Significant grid stretching to grid resolve the upper chromosphere and transition region in addition to artificial transition region broadening
- **M** Due to the very high resolution below 1.15R_{sun} AWSoM is too slow to achieve faster than real-time.

AWSoM-R: Upshift the Inner Boundary

- **M** We use the lower boundary of the AWSoM-R model at $R = 1.15R_s$
- **M** We apply 1D thread solutions along PFSS model field lines to bridge the AWSoM-R model to the chromosphere through the transition region.

Apply 1D Thread Solution

- M Recognize that between 1R_s and 1.15R_s u || B and u≪V_{slow}, V_A, V_{fast}
- M Quasi-steady-state mass, momentum, energy transport and wave turbulence transport is solved along the connecting field line implicitly (1D equations!)
- M The speed-up of AWSoM-R is about a factor 200 compared to AWSoM

Validation: MHD Quantities at 1AU

Outlook

- M Significant speed-up (about 200 times) of the 3D global solar corona and inner heliosphere model AWSoM:
 - 1D solutions between 1 R_{sun} and 1.15 R_{sun} along PFSS model field lines provide inner boundary conditions at 1.15 R_{sun}
 - AWSoM real-time runs now require ~120 processor cores to be faster than real-time.
- M Run-on-request version (steady state synoptic solar wind) is presently AWSoM and will be updated to AWSoM-R for improved speed