

Reka M. Winslow

University of British Columbia Earth, Ocean and Atmospheric Sciences

Nathan Schwadron (UNH), Noé Lugaz (UNH), Charles W. Smith (UNH), Charles J. Farrugia (UNH), Brian J. Anderson (APL)

MESSENGER MErcury Surface, Space Environment, GEochemistry, and Ranging

MESSENGER at Mercury:

Nominally positioned to observe ICMEs at < 0.5 AU

MESSENGER – First spacecraft since 1980's at < 0.5 AU.

- Allows observations of ICMEs in more 'pristine' conditions.
- At Mercury's orbital distances since 2008 (cruise + orbit data).

Reka Winslow et al. – Early detection system for geomagnetic storms

rwinslow@eos.ubc.ca

MESSENGER MErcury Surface, Space Environment, Geochemistry, and Ranging Background and Motivation

Background:

• Möstl et al. (2012) and Nieves-Chinchilla et al. (2013) highlight the need for multipoint in situ observations to resolve ICME evolution in the inner solar system.

MESSENGER MErcury Surface, Space Environment, Geochemistry, and Ranging Background and Motivation

Background:

• Möstl et al. (2012) and Nieves-Chinchilla et al. (2013) highlight the need for multipoint in situ observations to resolve ICME evolution in the inner solar system.

Main Goals:

- Trace ICME evolution from Mercury to 1 AU: effects of interaction with solar wind on CME speed and magnetic field.
- Determine if possible to predict ICME B_Z direction at 1 AU from observations with MESSENGER
 - If so, lay groundwork for improved geomagnetic storm prediction at Earth using in situ data from < 0.5 AU (prepare for Solar Orbiter).

MESSENGER MErcury Surface, Space Environment, Geochemistry, and Ranging Background and Motivation

Background:

• Möstl et al. (2012) and Nieves-Chinchilla et al. (2013) highlight the need for multipoint in situ observations to resolve ICME evolution in the inner solar system.

Main Goals:

- Trace ICME evolution from Mercury to 1 AU: effects of interaction with solar wind on CME speed and magnetic field.
- Determine if possible to predict ICME B_Z direction at 1 AU from observations with MESSENGER
 - If so, lay groundwork for improved geomagnetic storm prediction at Earth using in situ data from < 0.5 AU (prepare for Solar Orbiter).

Method:

- Use data from MESSENGER at Mercury + ACE, WIND, STEREO at 1 AU
- ICMEs not in conjunction: statistical study of ICME speed, ram pressure, magnetic field (sheath + cloud), shock normal direction.
- ICMEs in conjunction: in-depth study with MHD modeling of ICME propagation to yield 3-D picture of ICME expansion.

MESSENGER MErcury Surface, Space Environment, Geochemistry, and Ranging

MESSENGER orbital observations of ICMEs: 10/15/2011 event

APL MESSENGER

MESSENGER orbital observations of ICMEs:

11/23/2011 event

APL MESSENGER

11/23/2011 event

- Magnetopause much closer to planet ($R_{SS} = 1.2 R_{M}$) compared to average location ($R_{SS} = 1.45 R_{M}$) from Winslow et al. (2013).
- Shock less flared than in Winslow et al. (2013).

APL MESSENGER

ary Surface, Space ENvironment, GEochemistry, and Ranging

ICME influence on Mercury's magnetosphere:

11/23/2011 event

- Cusp latitudinal extent ~22° (twice the average extent found in Winslow et al. (2012).
- Plasma pressure ~10x higher than average in Winslow et al. (2012).

MESSENGER MErcury Surface, Space Environment, Geochemistry, and Ranging

For large ICME events (such as ones shown) and ones that are observed in conjunction, conduct MHD modeling of ICME propagation.

Current model and simulation setup (open to suggestions and modeling collaborations):

- Space Weather Modeling Framework (SWMF) developed at UMichigan by Tóth et al. (2007)
- Setup similar to Lugaz et al. (2013) and Lugaz & Farrugia (2014)
 - Simulation domain is a Cartesian box centered on Sun and extending +/- 220 R_{Sun}
 - Solar wind is driven by Alfvén waves (van der Holst et al., 2010)
 - CME initiation by Gibson-Low flux rope (Gibson & Low, 1998) inserted into steady-state solar corona.

Model runs:

- Obtain model outputs along MESSENGER trajectory through the ICME at Mercury and at all relevant spacecraft trajectories at 1 AU.
- Model runs will be made available to the CCMC community.

MESSENGER

MErcury Surface, Space ENvironment, GEochemistry, and Ranging

Initial simulation results:
Magnetic field strength (2-D cuts)

At 1 AU:

At 0.3 AU:

Solar Radii

Simulation outputs at 2 locations: 0.3 AU and 1 AU.

Reka Winslow et al. – Early detection system for geomagnetic storms

rwinslow@eos.ubc.ca

At 0.3 AU:

MESSENGER

MErcury Surface, Space ENvironment, GEochemistry, and Ranging

At 1 AU:

 $B_{\rm X}$ – blue

 $B_{\rm Y}$ – green

 $B_{\rm Z}$ – red

 $|\mathbf{B}|$ – black

Initial simulation results: 1-D cuts in ecliptic plane

At 1 AU:

At 0.3 AU:

IMF:

 $B_{\rm X}$ – blue

 $B_{\rm Y}$ – green

 $B_{\rm Z} - {\rm red}$

|**B**| – black

Note:

- Large drop in ICME |B| from 0.3 to 1 AU.
- B_z long southward pointing section still present.

Reka Winslow et al. – Early detection system for geomagnetic storms

rwinslow@eos.ubc.ca

MESSENGER MErcury Surface, Space Environment, GEochemistry, and Ranging

Work underway:

- For ICMEs not in conjunction, statistical study underway to determine average ICME characteristics at ~0.3 AU and 1 AU.
- ~5 ICME events in conjunction at Mercury and 1 AU in 2011 + 2012.
- In-depth study of these events, including:
 - shock normal determination through minimum variance analysis
 - magnetic field direction in sheath and cloud
 - average ICME speed determination (limited solar wind measurements with MESSENGER)
 - ram pressure proxy determination at MESSENGER

+

MHD modeling

Constrain evolution of ICME shock, magnetic field, speed, and ram pressure from 0.3 AU to 1 AU;

Potentially lay the groundwork for improved geomagnetic storm prediction for Solar Orbiter.