

7'th CCMC workshop - 2014 Annapolis

DTU CCMC/SWRC collaboration: Space Weather Forecast

Susanne Vennerstrom

DTU Space

Technical University of Denmark

DTU - Space Weather

Linking expertise in 4 important areas:

- 1. Interplanetary disturbances magnetosphere coupling (Section of Astrophysics)
- 2. The ionosphere communication and navigation (Section of Geodesy)
- 3. The Earth's magnitic field and geomagnetic activity (Section of Geomagnetism)
- 4. Space instrumentation (Section of Measurement and Instrumentation)

DTU – Space weather Polar region experience

Number	Station	ID Number	Latitude [deg]	Longitude [deg]	Ellipsoidal Height [m]
1	Thule	THU4	76,5371	-68,8259	36,49
2	Upernavik	UPVK	72,7883	-56,1280	164,80
3	Godhavn	QEQE	69,2526	-53,5223	48,71
4	Nuuk	NUUK	64,1835	-51,7312	109,47
5	Julianehåb	QAQ1	60,7152	-46,0478	110,46
6	Scoresbysund	SCOR	70,4853	-21,9503	128,50
7	Danmarkshavn	DMNH	76,7711	-18,6557	55,49
8	Station Nord	NORD	81,6001	-16,6554	69,36
9	Sisimiut	SISI	66,9343	-53,6729	62,50

IGS standards implemented at all stations

DTU Space ground magnetometers: special focus on Greenland

- ☐ Magnetic observatory
- Variometer station
- Variometer station (MAGIC)
 - 12 West Coast magnetometer stations along constant geomagnetic longitude
 - Longitudinal coverage from polar cap to auroral oval
 - Monitoring electric current systems in the Arctic ionosphere and magnetosphere
 - Monitoring geomagnetic variations that drive ground induced currents, affect directional drilling.
 - East Coast magnetometer stations

When developing the arctic

- There are severe challenges
 - Challenging nature
 - Accuracy of maps
 - Remoteness of the region
 - Communication
 - Weather

..... and

-Space Weather...

Vision: DTU - Space Weather

Observations from ground and satellites

Forecast
Experimental and educational forecast activities

Monitoring
Derivation of space
weather relevant
parameters

Dissemination in user-friendly representations to users and the public in Denmark and Greenland

Most space weather events are global phenomena

Space Weather Forecast is a GLOBAL CHALLENGE which should be addressed through INTERNATIONAL COLLABORATION

Europe and North America

Magnetometer stations

Closing the gap in scientific and operational space weather infrastructure between North America and Europe in near real time.

DTU - Space Weather **Experimental and Educational Forecast Service**

- Experimental:
 - The main goal is to improve current space weather forecasting

- Educational:
 - Education is an integrated part of the activity

DTU – CCMC/SWRC Collaboration: Daily forecast

First training as forecasters:

- What to look for?
- Which models to use?
- How to derive input parameters for models and launch model runs?
- Procedures for alerts: Events, thresholds
- How to create daily/weekly reports

iSWA - Integrated Space Weather Application

StereoCat-tool X STEREO Analysi X SiNtegrated Spac X Access to this p X Nkke-navngivet X swx mobile link X SiNtegrated Spac X

Forecasting CME arrival and impact

Mercury

20W9021 LAT = -7.2°

■ Stereo_A ■ Stereo_B

10 20

ENLIL-2.7 lowres-2121-a3b1f WSA_V2.2 GONG-2121

Venus

IMF polarity

2012-03-06T00:00

Ecliptic Plane

Mars

Earth

■ Spitzer

 $R^2 N (cm^{-3})$

Weekly international tag-up, Thursday 15.00 UTC

Educational forecast

DTU education:

"Earth and Space Science and technology"

- Regular Courses:
 - Students are trained in forecast methods
 - Students participate in international tag-up
- Students engage in project to develop new forecast and monitoring methods

Experimental forecast service

You are in a good position to improve forecasting when you:

 Keep track of which observations (often science driven) are available in near-real time and with which time-delay (and adapt the methods)

 Keep track of new models developments and tools, their strengths and limitation

• Think in terms of user needs (preferably one step ahead).

The obvious way to achieve this is to engage as forecaster!

DTU – CCMC/SWRC collaboration

- Daily forecasts based on world top methods
- Daily logs and Database of space weather events
- Easy access to real-time data and model output
- Weekly international "tag-ups" (telecons)
- Student participation

PERSPECTIVE:

24/7 Space Weather forecast through international collaboration

Space Weather is an international challenge!

SSA Heliospheric Expert Service Centre:

- Space weather forecast

2001/04/01 00:18

DTU Space Weather:

- Automatic detection of solar wind disturbances
- Geomagnetic storm forecast
- Focus on polar electrojets

Geomagnetic storm forecast

Effects in the Arctic

- Impulsive currents are generated in the auroral oval of the ionosphere
- Small scale perturbations of the ionosphere densities (scintillations)
 - Affecting communications and GNSS applications
- Perturbing the magnetic field:

Irregularity Distribution - Scandinavian Sector $log(C_kL)$ Date: 15 October 2011SSN: 140 Time: 2300 UT 30 Copyright 2007, Northwest Research Associates, Inc.

SSA Ionospheric Expert Service Centre:

- Ionospheric monitoring and modelling

Monitoring:

- Each station: Slant-TEC, VTEC, S₄, σ_{rms}
- The Greenland sector: TEC (lat, lon, time)
- Products:

- Each station: f_oE , f_oF2 , f_{max} , H_E , H_{F2} , cycle slips
- Tomographic data: Global Ionosphere Maps (GIM) of TEC and N_e , Auroral Oval (Feldstein), Scintillations (1-25 Hz), $\Delta TEC_{Obs-Model}$ (lat, long, time)
- Baseline-variations (Nuuk and Sisimiut) for general RTK-users
- Arctic GIM, PIM, NTCM-GL modelling
- Arctic scintillation and propagation modelling (WBMOD, GISM, and FSM)

Possible users in Arctic

- Air traffic in Greenland availability of local airport HFcommunication
- Ship traffic and routing (fleet of fishing ships)
- Oil- and gas industry prospecting (primarily west of Greenland)
- Infrastructure tasks for local communities
- Danish Coastguard and Navy (ship monitoring and 'Search & Rescue' activities)

SSA Geomagnetic Expert Service Centre:

- Geomagnetic activity monitoring

Magnetometers in Norway and **Denmark**

- Near-real time federated service in ESA SSA.
- polar electrojet, GIC, directional drilling

Magnetometers in **Greenland**

polar electrojet, GIC, directional drilling

Polar Cap Index

- Single station index (Qaanaaq/Greenland)
- Proxy for energy input from solar wind / merging electric field
- Ground based solar wind indicator

NRT: near real time.

DTU leads the ESA-funded *Swarm* Level 2 Processing System *SCARF*

- six European institutes and two US partners
- six processing chains processing Swarm Level 1b data
- product delivery to ESA for distribution to the scientific community

Level 1b data: Validated time series of:

- High-precision magnetic field (1Hz, 50Hz)
- Electron and ion density and temperature, ion drift velocity, electric field (2Hz)
- Pre-processed accelerometer data (1Hz)

Level 2 data with Space-Weather relevance:

- Advanced models of the Earth's magnetic field
- Radial and field-aligned currents
- Equatorial "bubble" index
- Dayside equatorial eastward electric field
- Slant Total Electron Content
- Thermospheric density and winds
- Magnetic signal of magnetospheric currents (Dst-like)

Swarm provides timely and accurate geomagnetic reference field that can be used in ESA SSA.

Possible Swarm Products

Realtime versions can be developed

Monitoring electrojets

Equatorial bubble index

Monitoring Ionospheric irregularities

