

Laboratory for Atmospheric and Space Physics University of Colorado **Boulder**

CCMC User Experience: Analysis Tool Refinement using Enlil Case Studies

Joshua Murphy
PhD Student

Department of Computer Science &

Laboratory for Atmospheric and Space Physics
University of Colorado Boulder

7th CCMC Workshop – 2 April 2014 Annapolis, MD

Planetary Science • Space Physics • Solar Influences • Atmospheric Science • Engineering • Mission Operations & Data Systems http://lasp.colorado.edu

What do I do?

Why?

- Because Space Weather is IMPORTANT!
- Because current analysis tools are hard to use, and are MANUAL!
- To improve Space Weather Situational Awareness:
 - Know what is going on
 - Know what might happen
 - Make a plan to mitigate problems!
- To find the analysis bottlenecks!
- To use modern scientific computing hardware to solve these bottlenecks!

The big puzzle...

How?

 Need a platform on which to work!

 Gain understanding through case studies!

 Identify bottlenecks in the studies!

 Find creative ways to solve the problems!

roblems si

• I'm a computer scientist, so...

• To understand Joh Murphy2 02 13 14 50 Density at 1 AU ACE TO THE STATE OF THE STA

work t analy

• The more problems we sed, the better the too can be refined as a solution of the solution of

Bottlen

- Modern model analysis will require modern computational ability!
- Need to harness the power of new and emerging

How CCMC helps

- This research would not be possible without CCMC!
- To date of the control of the c

▶ Runs on Request: Heliosphere Simulations Results

Total Number of Runs in the Database: 4195 Total Number of Search Results in this Database: 302

Event Date Run Number Key Words Model Type

Refining Tools – First Case Study

- Parametric Enlil Study to find impact-time variations based on differing CME parameters
- Attempt to determine the impact of errors in cone model parameters on space weather forecasts
- Will eventually cover a large parameter space

Completed Runs

- Enlil runs submitted to CCMC with:
 - Latitude of the CME varying at 5 degree intervals
 - Currently -20 degrees to -35 degrees
 - Longitude of the CME varying at 2 degree intervals
 - Currently 20 degrees to 38 degrees
 - Cone Angle intervals of 5 degrees
 - Currently 25 degrees to 50 degrees
- Based on actual events!

Analysis of a CME

- CME impact time is calculated for each model run
- Plots are generated to show the variation of model

CCMC Impressions

- Provides invaluable resource
- User interface is lacking some needed features
 - Some things (such as Carrington rotation selection) can and should be automated
 - Need better status information related to pending jobs
 - Need a way of removing runs that are not needed
- Could use better/easier online visualization tools
 - ParaView Web might be a good fit (using GHOSTkit of course)

Research Directions

- Future Work will include
 - Automated feature extraction
 - Unified model environment
 - One click' satellite comparisons
 - Additional model support
 - Magnetosphere tools
 - Radiation Belt tools

Contact LASP

- 1234 Innovation Drive, Boulder, CO 80303
- 303-492-6412
- http://lasp.colorado.edu
- info@lasp.colorado.edu

Questions?

