Using CCMC Space Weather Modeling Resources in a Classroom

Michael W. Liemohn Atmospheric, Oceanic, and Space Sciences Dept., University of Michigan

AOSS 477: Space Weather Modeling

- U-M offers a senior-level course in space weather modeling
 - Taken by all Space Weather concentration students in our ESSE BSE degree program
 - Also taken by a fraction of the space physics PhD students
 - Also taken by a few M-Eng in Space Engineering students
- We've taught it 5 times now
 - Elevated to an every-year offering
 - Enrollment varies from 7 to 14
 - Seems reasonable but I would like it be higher

What is it about?

- <u>Using</u> state-of-the-art space weather models
 - Not really a programming course
 - We have a different one for that
- Synthesis, capstone course for the undergraduates
 - Applying knowledge learned in previous courses
 - They have taken several others up to this point:
 - AOSS 323: Earth System Analysis
 - AOSS 370: Solar-Terrestrial Relations
 - AOSS 410: Earth System Modeling
 - AOSS 462: Atmospheric and Space Instrumentation
 - PHYS 405: Electricity and Magnetism
 - NERS 471: Plasma Physics

Sidenote on AOSS 370

- First-time-exposure to space physics
 - Emphasize the conceptual level first, then equations
 - Highly data oriented with a mixture of theory
 - Spend a class session each week in a computer lab
 - No modeling, just some model-result graphics
 - Designed for junior-level undergrads, not MS/PhD students
 - End-of-term project: analyze a space weather event
- CCMC is introduced in this class
 - Only used a little to visualize space physics concepts
 - Individual and small-group work exploring CCMC
- Most who take 477 have taken 370 (or AOSS 574)

AOSS 477 is a report-based course

- Students use models and conduct their own space weather numerical investigation
 - Several projects on using codes and writing/presenting reports based on their numerical experiments
 - Data used as model input and for model result comparison
- Variety of student assessment criteria
 - Many oral presentations and written reports
 - Peer grading of the oral presentations
 - In-class discussion participation

Peer grading?

- Yes, every oral presentation is assessed by the rest of the class
 - The form is nearly identical to what I am using for that presentation
- Two ways this counts towards their grade
 - The score that their peers gave them
 - Small percentage of the project grade
 - The depth of their assessments of their peers
 - A slightly larger percentage of the project grade
- Learning how to watch for good and bad science in both methodology and communication

Course Content

- Class content is a mixture of modeling nuts-and-bolts, code usage and visualization, and research techniques
- Students learn about the guts of numerical models used for space physics
 - Lots of details on equations being solved and numerical methods used to convert equations to code
 - Examples across the entire spectrum of space physics
- But also, they will:
 - Hone your technical report writing skills
 - Improve your public presentation skills
 - Read/discuss a few journal articles and decide what is good/ bad about them

Journal articles?

- Final report is essentially a journal article
 - Pose a space physics question and use model to address it
 - Literature search, model description, sensitivity study, data-model comparison, interpretation of their findings, and summary
- I teach this by having them critique other modeling papers
 - Five in-class paper discussions of modeling studies
 - Two of their presentations/reports are paper critiques
 - I spend time going over good and bad presentation and paper writing techniques
 - "Journal club" is a significant part of the course

"Under the Hood" with CCMC Models

- Details of CCMC models
 - One model per class session, sometimes combined
- Many aspects to this:
 - What region/phenomenon is being modeled by a code?
 - What equations are being solved by the code?
 - What numerical approach was used in the code?
 - What typical grids are used in the code?
 - What inputs does the code require?
 - What outputs does the code produce?
 - What are the ranges of I/O validity for the code?
 - What other codes are similar in region, equation, or numerics?

Models Covered This Year

- MHD Models
 - Started with a general discussion of MHD equations, MHD extensions, and typical CFD techniques
 - BATS-R-US, LFM, OpenGGCM, Winglee code, ENLIL
- Inner Mag Models
 - HEIDI, RCM, RAM-SCB, CRCM/RBE/CIMI, VERB, DGCPM, IMPTAM, STET
- Ionosphere-Thermosphere Codes
 - GITM, SAMI, CTIP, TIEGCM
- Kinetic Codes
 - General discussion of test particle and hybrid modeling
- Empirical Models
 - Weimer codes, Tsygnanenko family, IRI, MSIS, WINDMI, formulaic models for m'pause, CPCP, Dst
- Coupled code suites
 - SWMF, CISM, other examples from coupled codes at CCMC

Intro to CCMC and VMR

- Spend a day going over what's at CCMC website
 - What's there, how it's structured, examples of runs/plots
- Spend a day playing with the plotting tools
 - Playing around with visualization pages
 - Lots of small group work
 - At first: assign them a specific task
 - Later on: give them a question to explore
- Spend a day going over the VMR (Darren came in)
 - Virtual Model Repository, a NASA-sponsored VxO
 - In case you don't have it: http://vmr.engin.umich.edu/
 - Linked to CCMC output files
- Spend a day with iSWA/SWE
 - Explore the real-time Sun-to-Earth space weather connection

Modeling Study #1

- Students will use CCMC to explore a region of space
 - Data only as input, just model results as output
 - Pick one model and get to know it
 - Read papers on the model to understand what others have done with it
 - Explore the range of input parameters
 - See what this does to the output
 - Could just use archival run results, but also instant/RoR jobs
 - Write a report and give a presentation on your findings
- Students can choose what code to use for this
 - But, they have to change for modeling studies #2 and #3

Modeling Study #2

- Write your own numerical model
 - Any formulaic "model" is acceptable
 - I will go over a bunch in class before assigning this project
 - Dst, CPCP, magnetopause, RB e- fluxes, etc.
 - Must write the code from scratch yourself
 - Must use a month of data to drive the model
 - Must use other data for output comparison
 - Dst predictor: Kyoto Dst or SYM-H
 - CPCP: AMIE values from VMR repository
 - Magnetopause predictor: GOES/LANL crossings
 - Write a report and give a presentation on your findings
- No direct CCMC involvement here

Modeling Study #3

- The biggy: putting it all together
 - Conduct a study that leads to a journal-style report
 - Data as input and output comparisons
 - Lots of literature review and interpretative discussion
 - Bigger report and longer presentation
- CCMC is <u>heavily</u> used by most in the class
 - Undergrads: almost certainly using a CCMC model
 - M-Eng students: definitely using a CCMC code
 - PhD students: maybe using their research project code
 - But maybe not, especially for non-numerical-oriented students

CCMC Student Research Contest

- Modeling Study #1 and #3 are perfect for this
 - I have specific requirements for the projects, but in general they fit nicely with the requirements of this contest
- AOSS 477 student prize winners:
 - Ava Dupre, a junior undergrad, won second place in 2012!
- This year's CCMC Student Research Contest
 - Submissions are due May 1
 - Model Study #3 is due April 21 in my class
 - I hope that several students will refine their reports and submit them to your contest

Summary on my class experience

- AOSS 477 is a fun class to teach
 - Students already know the relevant physics...apply it here
 - Focus on good-v-bad approaches to both conducting and communicating science
- Pedagogical balance is appreciated
 - Even split between "assessing" other people's studies and "doing" their own modeling studies
 - Students really enjoy the hands-on approach and discussion-based class environment
- Please hire our students!
 - AOSS undergrads and M-Eng students are highly qualified to run space weather models and explore the space environment

Summary: "classroom CCMC" is fantastic

- CCMC staff are very responsive to student requests
 - They understand that I impose deadlines for projects!
 - Having past run output available is very useful
 - Visualization tools and model selection is expanding
- I am here to learn
 - I would love to tweak the course based on what others do with the CCMC in their classes
 - I am very receptive to suggestions and comments
- I am willing to share
 - Developing a course is a lot of work, let's help each other
 - Find me at the break or email me and we can talk