

A Student's Perspective on NASA's Community Coordinated Modeling Center

Colin Komar
West Virginia University
2014 CCMC Workshop
Annapolis, MD
April 2, 2014

Dayside Magnetopause Reconnection

- For southward IMF, reconnection occurs at subsolar point
- All four magnetic topologies are separated at subsolar point
 - Magnetic separator (X)
- Reconnection occurs at separator

[Space Weather Explorer]

Dayside Magnetopause Reconnection

- For southward IMF, reconnection occurs at subsolar point
- All four magnetic topologies are separated at subsolar point
 - Magnetic separator (X)
- Reconnection occurs at separator
 - Separators can be defined for arbitrary clock angle
 - Finding separators is important for locating reconnection at the dayside magnetopause

Separator for $\theta_{\text{IMF}} = 90^{\circ}$ global magnetospheric MHD simulation [Space Weather Explorer]

A New Method to Trace Separators

- We developed a simple and efficient method to locate separators (Komar et al., JGR, 2013)
 - 1) Start at a known location on the separator: X
 - 2) Center hemisphere at this location
 - 3) Calculate topology of field lines piercing the hemisphere's surface
 - 4) Find topological merging point on hemisphere: X
 - 5) Center new hemisphere at X
 - 6) Repeat 3) 5) until known stopping point within a hemisphere
 - 7) Connect points to trace separator

Finding the Separator on a Hemisphere

 Perform a bi-directional trace of magnetic field lines piercing hemisphere to determine magnetic topology

Closed: Red

Open: Orange

Northern: White

- Southern: **Black**

- Approximate merging point of four topologies (asterisk)
- Computationally efficient: field lines are traced on surfaces of hemispheres

Example topology map for $\theta_{\text{IMF}} = 30^{\circ}$ at $\mathbf{r} = (3.16, 1.87, 8.01) \, \text{R}_{\text{E}}$. [KAMELEON]

Method Verification

Find separators in vacuum superposition:

$$\mathbf{B} = \mathbf{B}_{\text{Dipole}} + \mathbf{B}_{\text{IMF}}$$

Vacuum superposition
has analytic solutions
for separators
(Yeh, 1976; Hu et al., 2009)

Our method accurately traces separators!

Separators in vacuum superposition for $\theta_{\text{IMF}} = 30^{\circ}, 90^{\circ}, 150^{\circ}.$

Separator Clock Angle Dependence

 Traced separators in global resistive MHD simulations for different IMF clock angles (BATS-R-US)

Our method traces entire separator for any IMF orientation!

One Year Later...

- (1) Locate magnetopause (top plot, green) from current maximum (Nemecek et al., 2011)
- (2) Find magnetopause normal and sample plasma properties
- (3) Calculate reconnection model at each point
- (4) Find each reconnection model's prediction via each model's maximized quantity
 - We use image processing techniques to detect "ridges" (Lindeberg, 1993, 1998)
- (5) Compare with magnetic separator

One Year Later... (cont.)

Perform a comparative analysis of reconnection location models at Earth's dayside magnetopause (Komar et al., in prep.)

Summary

- CCMC has enabled us to study three-dimensional magnetic reconnection at the dayside magnetopause
 - Locate magnetic separators in global resistive MHD simulations (BATS-R-US)
 - Use robust image processing techniques to compare predictions of dayside reconnection location models with magnetic separators for a variety of solar wind and magnetospheric conditions
- Implications for
 - Space Weather forecasting and geoeffectiveness of IMF with arbitrary strength and direction
 - NASA's upcoming Magnetospheric MultiScale Mission

Acknowledgments

- CCMC resources have led to two successful research projects
 - Runs on Request Service
 - On-line visualization, Space Weather Explorer, KAMELEON software
 - Simulation support
- Travel support to 2013 GEM Summer Workshop (CCMC/NSF)
- Work with CCMC will comprise at least two chapters (~40%) to my
 Ph. D. dissertation
- Additional thanks
 - Collaborators: Paul Cassak, John Dorelli, Ray Fermo, Alex Glocer, and Masha Kuznetsova
 - CCMC Staff: Anna Chulaki, Marlo Maddox, Anne Michelle Mendoza, and Lutz Rastaetter
 - Travel Support: NASA WVSGC

